

令和 6 年度 AO入試問題集

公表期限：2027 年 3 月末

東北大学アドミッション機構

目 次

◎令和 6 年度 AO 入試問題集

1 文学部 AO 入試 II 期	1
2 教育学部 AO 入試 II 期	35
3 教育学部 AO 入試 III 期	54
3 法学部 AO 入試 II 期	60
4 理学部 AO 入試 II 期	81
数 学 系	82
物 理 系	87
化 学 系	103
地 球 科 学 系	119
生 物 系	143
5 医学部医学科 AO 入試 II 期	149
6 医学部医学科 AO 入試 III 期	211
7 医学部保健学科 AO 入試 II 期	227
8 医学部保健学科 AO 入試 III 期	346
9 歯学部 AO 入試 II 期	354
10 工学部 AO 入試 II 期	414
11 工学部 AO 入試 III 期	457
12 農学部 AO 入試 II 期	462
13 農学部 AO 入試 III 期	524

令和 6 年度 AO 入試問題集 (文学部)

公表期限：2027 年 3 月末

東北大学アドミッション機構

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験①問題

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
文 学 部	10:30~11:30	
教 育 学 部	(60 分)	11 ページ
法 学 部		

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 11 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がある場合以外は、日本語で記入してください。
- 解答に字数の指定がある場合、句読点、数字、アルファベット、記号も 1 字として数えてください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

——このページは白紙——

——このページは白紙——

1 次の英文を読み、以下の問い合わせに答えなさい。

As an increasing number of elementary, middle and high school students in the U.S. have begun to identify as transgender, school leaders have struggled to figure out how to respond, and how – and whether – to communicate about their actions to parents.

In Maryland, for instance, three sets of parents filed a federal lawsuit in 2020 that challenged school guidelines allowing students to express their gender identities at school. In some situations teachers and other school staff are asked not to notify parents ⁽¹⁾ they are doing so.

The federal trial court ruling, which has been appealed, determined that parents did not have a fundamental right to be informed promptly if their children chose to identify as another gender while at school.

The judge tried to balance both parents' rights under the due process clause of the Constitution and states' rights to regulate public education, even if they conflict with parental wishes.

⁽²⁾ The judge found that while school board officials intended to ultimately inform parents, if educators had concerns about a child's safety they would hold off on doing so.

The board's rules, the judge wrote, "keep a student's gender identity confidential ... out of concern for the student's well-being." The rules also call for a "comprehensive gender support plan that anticipates and encourages eventual familial involvement wherever possible."

In short, parents have a general right to know about their children's activity in school. (3) to privacy and personal safety.

The Maryland case is by no means the only case in which school officials have been caught between students' right to privacy and parents' right to know. As researchers who specialize in education law, we have analyzed similar cases in Iowa, Massachusetts, Wisconsin and Virginia.

Regardless of how the cases from Maryland and elsewhere play out, this issue is likely to continue to generate additional controversy and *litigation.

(4) Disagreements between parents and schools over education are not new. In 1925, in *Pierce v. Society of Sisters*, a dispute from Oregon, the Supreme Court upheld the rights of parents to send their children to schools run outside the public education system.

The justices famously wrote: “The child is not the mere creature of the state; those who nurture him and direct his destiny have the right, coupled with the high duty, to recognize and prepare him for additional obligations.” This signaled clearly that parents have rights over how their children are raised and educated.

But the U.S. Supreme Court has not yet decided clearly (5). As a result, an *appellate court in New Jersey observed that courts have held that “in certain circumstances the parental right to control the upbringing of a child must give way to a school’s ability to control curriculum and the school environment.”

Courts have even decided that there may be times when school or other public officials have legitimate interests in intervening where parents would typically have free rein, to assist or protect children. For example, educators might choose to keep information about students’ gender identity from parents if school staff members have reason to believe the students would be kicked out of their houses, physically abused, or forced to participate in abusive counseling programs, such as conversion therapy.

At the same time, school officials must ensure protection of students’ rights. In particular, many states have laws requiring school board officials to protect their students from discrimination and violations of privacy.

(中略)

School staff members have legal obligations to protect students’ privacy. According to the 3rd U.S. Circuit Court of Appeals, “It is difficult to imagine a more private matter than one’s sexuality and a less likely probability that the government would have a legitimate interest in disclosure of sexual identity.”

Even so, schools often want parents to be involved in their children’s education and the wider school community. This regularly puts educators in the sensitive position of having to protect student privacy while respecting parental rights to raise their children in accordance with their values.

(6) () (ア) () (イ) how (ウ) () balance parental rights to direct the lives of their children and the role of educators in safeguarding the privacy rights of students – and whether the Supreme Court can, or will, ever set clearer rules in this important topic.

(Charles J. Russo, Maggie Paino, and Suzanne Eckes, “Rights of transgender students and their parents are a challenge for schools, courts,” *The Conversation*, Feb 6, 2023. より一部改変)

*litigation 訴訟 *appellate 上訴の

問1 下線部(1)は具体的に何を意味しているのか、本文に即して説明しなさい。

問2 下線部(2)について、doing so が指すことを明らかにして、日本語に訳しなさい。

問3 空欄(3)に入る最も適切なものを以下のア～エの中より1つ選び、記号で答えなさい。

ア Therefore, parental rights must not be limited by students' rights

イ Therefore, students' rights must not be limited by parental rights

ウ However, parental rights can be limited by students' rights

エ However, students' rights can be limited by parental rights

問4 筆者は下線部(4)のように主張する根拠としてどのような具体例をあげているか。本文に即して40字程度で説明しなさい。

問5 空欄 (5) に入る最も適切なものを以下のア～エの中より1つ選び、記号で答えなさい。

- ア where the duties of students end and the duties of their teachers begin
- イ where the rights of students end and the rights of their teachers begin
- ウ where the duties of parents end and the duties of their children begin
- エ where the rights of parents end and the rights of their children begin

問6 下線部(6)の ()内に、文脈に合うように以下の①～⑦の語を最も適切な順序に並び替えて入れるとき、(ア)(イ)(ウ)に入る語の番号を答えなさい。ただし文頭の語も小文字になっている。同じ選択肢を複数回使用しないこと。

() (ア) () () (イ) how (ウ) ()

- ① it
- ② to
- ③ seen
- ④ will
- ⑤ be
- ⑥ remains
- ⑦ courts

2 次の英文を読み、以下の問い合わせに答えなさい。

*Fertility rates are falling across the globe – even in places, such as sub-Saharan Africa, where they remain high. This is good for women, families, societies and the environment. (1) So why do we keep hearing that the world needs babies, with *angst in the media about maternity wards closing in Italy and ghost cities in China?

The short-range answer is that, even though this slowdown was predicted as part of the now 250-year-old demographic transition – whose signature is the tumbling of both fertility and mortality rates – occasional happenings, such as the publication of US census data or China's decision to relax its two-child policy, force it back into our consciousness, arousing fears about family lines rubbed out and diminishing superpowers being uninvited from the top table.

The longer range answer is that (2) our notion of a healthy, vibrant society is still rooted in the past. The inevitable byproduct of the demographic transition is that populations age, in a chronological sense, but life expectancy, and particularly healthy life expectancy, have increased dramatically over the last half-century, and the societal definition of “old” has not kept up (though artistic experiments such as casting 82-year-old Sir Ian McKellen as Hamlet might help to challenge age-related stereotypes).

In the 19th century, a country needed youth to operate its factories, consume what they *churned out and constitute a fighting force in times of war. That became less true over the 20th century, and in the 21st it bears very little relation to reality. More and more of the jobs that require stamina and strength – including fighting – are done by machines, while a nation’s products are consumed globally.

Gross domestic product (GDP) might influence a nation’s geopolitical standing and a large GDP fills government *coffers, but (a). Twenty-somethings and 50-somethings have different kinds of intelligence, says gerontologist Sarah Harper of the University of Oxford, but both play a part in entrepreneurship. And if you care about human wellbeing (3) you () (ア) () (イ) () (ウ) () ().

Demographer Ron Lee of the University of California, Berkeley, and others have shown that GDP per person, and hence living standards, are highest when fertility falls just below replacement level (around 2.1 births per woman) – to 1.6 or even less.

When fertility is either much higher or much lower than that, quality of life falls off again. Lee would be worried if he was in South Korea at 0.8 births per woman, or China at an estimated 1.3, he says, but England and Wales (1.6), the European Union (1.5) and the US (1.6) are all hovering around ⁽⁴⁾ that sweet spot.

That doesn't mean we don't have to adapt to the new reality. We do, in part because the way many countries distribute resources is also rooted in the 19th century and is unsustainable. (b), for example. Although creativity doesn't fall off with age, skills change, and we need to replenish those that are lost from the workforce. And when elderly people do finally stop being productive, we need to find new ways and new workers to care for them.

(c), smoothing the demographic transition for richer countries while redistributing capital to poorer ones where fertility rates remain relatively high. The evidence is overwhelming that, in general, immigration is good for societies – economically, but also socially. Closing doors to it is, in this sense, self-destructive.

So there's work to do, but in a world in the grip of a climate crisis, to which we've added 7 of the nearly 8 billion humans in just a couple of centuries – and to which we will almost certainly add another 3 billion before our numbers start falling again – it's absurd to say that what's lacking is babies.

⁽⁵⁾ In fact, trying to force people to have either more or fewer babies turns out to be rather pointless. Despite China's decades-long one-child policy, its fertility decline hasn't been dramatically steeper than elsewhere in East Asia. France's *valiant efforts to encourage large families with financial incentives haven't made much difference either, compared with the rest of Europe. As child mortality drops, and women's health and education improve, fertility falls. Parents choose to invest more time, money and love in fewer children. You can sway their decisions slightly by making life harder or easier for families – through childcare provision, say, or parental leave allowances – but the demographic transition is unstoppable.

(Laura Spinney, "Why declining birth rates are good news for life on Earth," *The Guardian*, Jul 8, 2021. より一部
改変) (Copyright Guardian News & Media Ltd 2024)

*fertility rates 出生率

*angst 不安全感

*churn out 量産する

*coffer 財源, 金庫

*valiant 勇ましい

問1 下線部(1)の質問に対しての答えの1つとして筆者があげているものはどれか、次のア～エより最も適切なものを1つ選び、記号で答えなさい。

- ア イタリアの産科病棟の閉鎖や中国のゴーストシティなどの状況は他国のこととして冷静にとらえることができるから。
- イ 人口減は、人口動態の変化の一環としてはまったく予測されていなかつたから。
- ウ 人口減の特徴は出生率と死亡率の両方の低下であるから。
- エ 家系が絶えてしまうとか、超大国でなくなってしまうというような不安を感じるから。

問2 下線部(2)で述べられている “our notion of a healthy, vibrant society” とは具体的にどのような考え方か、本文に即して説明しなさい。

問3 空欄(a)～(c)に入る最も適切なものをそれぞれ次のア～エより選び記号で答えなさい。ただし文頭の語はすべて小文字にしてある。同じ選択肢を複数回使用しないこと。

- ア immigration – which tends to bring in young adults – is a critical component of that adaptation
- イ there's no evidence that young workers are any more productive than older ones today
- ウ more people need to work longer
- エ more and more consumers will get interested in local production for local consumption

問4 下線部(3)の()内に、文脈に合うように以下の①～⑧の語句を最も適切な順序に並び替えて入れるとき、(ア)(イ)(ウ)に入る語句の番号を答えなさい。同じ選択肢を複数回使用しないこと。

you () (ア) () (イ) () (ウ) () ()

- ① more attention ② should ③ GDP ④ per country ⑤ per person
- ⑥ to ⑦ pay ⑧ than

問5 下線部(4)は、具体的に何を意味しているか、本文に即して説明しなさい。

問6 筆者は下線部(5)のように主張する根拠としてどのような具体例をあげているか。本文に即して2点、説明しなさい。

令和六年度（二〇二四年度）

東北大学文学部 A〇入試（総合型選抜）Ⅱ期

筆記試験

試験期日 令和五年十一月四日（土）

試験時間 十三時～十六時

注意

- 一 問題冊子は指示があるまで開かないこと。
- 二 問題冊子は二一頁からなつていて、試験開始後、直ちに確認すること。
- 三 頁の落丁・乱丁および印刷不鮮明の箇所等に気付いた場合には、監督者に申し出ること。
- 四 解答用紙には、忘れずに受験記号番号を記入すること。
- 五 解答用紙を持ち帰つてはならない。終了後、問題冊子および下書用紙は持ち帰ること。

次の文章は、井田克征が著した「クマリー生ける女神の伝統は現代を生き残れるか」(『世界を動かす聖者たち』第二章、平凡社新書、二〇一四年)による。この文章を読み、次の問一、問二に答えなさい。なお、問一、問二とともに、改行のためにはじる余白および句読点も文字数に含む。解答は縦書きで記すこと。

問一 筆者が紹介するクマリーという制度について、六〇〇字以上、八〇〇字以内で説明しなさい。

問二 社会の変化が伝統に与える影響について、本文を参考に、あなたの知っている具体的な例を挙げ、それに対するあなたの見解を、一四〇〇字以上、一六〇〇字以内で述べなさい。なお、**解答の冒頭には自分の見解にふさわしい題名をつけなさい。**

第二章 クマリー生ける女神の伝統は現代を生き残れるか

ネパールの伝承から

ネパールに古い言い伝えがある。それは今から何百年も昔、マッラ王朝がまもなく終焉を迎えるようとしていた時代の物語——。

夜は更けて、すでに人びとは寝静まっていた。カトマンドゥの街も、そしてその真ん中にある古い煉瓦造りの王宮も、す

べてひつそりとしていた。しかし王宮の奥にある小さな部屋の中では、王と少女がさいころ遊びに興じていた。少女はとても美しく、そして驚いたことに額には第三の目がきらきらと輝いていた。彼女は黄金のイヤリングと冠を身につけて赤い衣を身にまとい、うつすらと不可思議な光を放っていた。二人はさいころを交互に振りながら、低いささやき声で話し続けていた。少女に対する王の口調はとても丁重で、彼女がただならぬ者であることが窺い知れた。王が何ごとかを熱心に少女に問い合わせると、少女はそれにゆつくりと答えるといった有様で、二人の会話はいつ終わるともなく続いていた。

しかし二人のこの密やかな会談は、突然に乱された。夜着を着たままの王妃が急に部屋へ入つて来て、きつい口調で王に問い合わせたのだ。

「この若い女は誰なのですか？ こんなところで私に隠れて何をしているのですか？」

激しい嫉妬に駆られた彼女には、こんな年端もいかぬ少女に國家の行く末について相談していたという王の弁明が信じられるはずもなかつただろう。言い争う王と王妃を前にして、少女は言つた。

「もう、たくさん。私はそういう人間の弱さに我慢できないの。王よ、あなたはもう私に会うことはないでしようね」

少女は、神秘的に響く声で王にそう告げた。一〇本の腕と、四つの顔を持つ女神本来の姿をあらわして。

「しかしあなたに相談することなしに、どうやってこの王国を治められましようか？」と言い縋る王に對して、女神は「そうね、あなたの王国にはもう先がないわ」と返すと、そのまま忽然と姿を消してしまつたのだった。

そののち王の夢の中にふたたび女神があらわれて、次のように告げた。

「もしあなたがどうしても私にもう一度会いたいというのなら、シャキヤ氏族の中から美しくてきずのない、三二一の徵しゆを持つた少女クリマリを選び出しなさい。そして私を礼拝するように、彼女を礼拝しなさい。そうしたら私は、彼女の中に姿をあらわしましよう。でもいいこと、あなたたちに受けた侮辱は、決して忘れないわ」

王はすぐさま司祭に命じて、ネワール族のシャキヤ氏族の中から、条件に合つた四歳の少女を探させた。見つけ出された

少女は、カトマンドウの王宮横に建てられた彼女のための宮殿に住まい、生ける女神として祀られることになった。やがて少女が初潮を迎える歳になると、彼女は実家に帰されて新しい少女が探された。このようにして交代しながら綿々と続いた少女たち^{クマリ}は、王が代わり、王朝が代わっても絶えることなく、今に至るまでカトマンドウにある自分のための宮殿に住んで、この国を守っている。

クマリという制度

ネパールのカトマンドウ盆地で行われているクマリ信仰は、この盆地の先住民族であるネワール人のシャキヤ氏族の中から一人の少女^{クマリ}を選び出して、彼女を王室の守り神であるタレジュ女神の化身として崇拜する。古い起源を持つこのクマリ崇拜は現在も続いていて、カトマンドウを訪れる者は旧王宮前の広場の一角にクマリの館を見出すだろう。もし運が良ければ、その窓からクマリが顔を出して手を振ってくれるかもしれない。

一三世紀のカトマンドウ盆地に興ったマッラ王朝は、ほどなく分裂して、この地にカトマンドウ、パタン、バクタプルという三つの王国を生み出した。ネワール族によって支えられたこれらの王朝は、チベットやインドとの交易によつて大きな富を得て、独特なネワール文化を発展させた。そんな中でカトマンドウ・マッラ王朝の最後の王ジャヤプラカーシュ・マッラが一八世紀に王宮横にクマリの館を建てて、王朝を守護するタレジュ女神の化身としてのクマリを崇拜し始めたと言われている。クマリ研究者マイケル・アレンは、このマッラ王朝時代の末期にカトマンドウ盆地の外から押し寄せてきたグルカ族の脅威が、ジャヤプラカーシュ王をタレジュ女神の崇拜へと向かわせたのだろうと述べている。

とはいえたる崇拜のルーツに関して、はつきりとしたことはまだ分かっていない。一六ないし一七世紀のトライローキヤ・マッラ王によって始められたという異説も広く流布している。そして王室とは無関係に、少女神クマリの崇拜 자체はも

つと古くからカトマンドゥ盆地で行われていたと言われている。先に見たさいころ遊びの美しい物語は、クマリが王室においてタレジユ女神の化身として崇拜されるようになつたいわれを語る数多くの物語の中の一つである。

女神が予言した通り、やがてジャヤプラカーシュ王のカトマンドゥ・マツラ王朝はグルカ族のプリティヴィナラヤン・シヤハ王によつて攻め滅ぼされる。そしてほどなく他の二つのマツラ王朝も滅亡し、五〇〇年にわたつて栄華を極めたマツラ王朝は終焉を迎えることになった。代わつてカトマンドゥ盆地を統一し、一七六八年に新王朝を樹立したプリティヴィナラヤン・シヤハ王は、マツラ王家の守り神であつたタレジユ女神をそのままシヤハ王朝の守護女神として迎え入れた。結果として、クマリ崇拜は一〇〇八年にネパールが連邦共和制へ移行するまで、この国の王家と深い関係を保つことになった。

クマリの条件

クマリは、ネワール族の仏教徒の中でも有力なカーストであるシャキヤ氏族の中から選ばれる。彼らは自分たちを仏教の開祖である釈迦牟尼（この呼び名は、釈迦族の聖者を意味する）と同族にあたると主張しており、だからとというわけでもないが仏教徒の中では僧侶カーストにあたるバジユラアーチャールヤの次に重要な位置を占めている。それは彼らが伝統的に金細工を職掌として、寺院の仏具や仏像の製作などを一手に引き受けることに加えて、寺院儀礼やさまざまな宗教的慣習においても重要な役割を果たしてきたことに関係する。都市部に住むシャキヤ氏族は古くから商業に従事することが多く、近代化の中で大きな力を得るに至つた。また金細工という伝統的な職業を生かした観光客相手の土産物屋（それはネパールらしい美術品からシルバー・アクセサリーまで多岐にわたる）や、ホテル業などのビジネスに進出して、財を築いたとも言われている。

冒頭の物語にもあつたように、王宮付きのクマリは、必ずこのシャキヤ氏族から選ばれることになつていて。一般に知ら

ロイヤル

れるところでは、シャキヤ氏族の三、四歳の少女の中から、身体上の欠点がなくて三二の身体的特徴を持った少女がクマリ候補として選び出される。このクマリのいわゆる三二相は、仏がそなえている身体的特徴、すなわち「三十二相八十種好」（有名なものとしては眉間の白毫（註1）や、頭頂の肉髻（註2）などが知られている）におそらく由来しているが、その内容は仏とクマリでは大きく異なっている。たとえばクマリは「獅子のごとき胸」、「青か黒の瞳」、「黒い髪」、「牛のごとき睫毛」、「アヒルのごとき（澄んだ）声」、「四〇本の歯」、「健康な身体」などをそなえていなければならぬとされている。しかしこの三二相は必ずしもすべてが現実的なものとは言えず（四〇本の歯が生え揃つた幼児は、まずいない）、実際にはいくつかの重要なチェックポイントさえクリアできればいいということのようである。

そうした身体的特徴をそなえたクマリ候補は、占星術師によつてホロスコープ（占星術表）を確認されることになる。このホロスコープはクマリを選ぶ際にきわめて重要な要素と考えられており、彼女自身が女神にふさわしい、吉祥な星の下に生まれていることもあることながら、彼女と王との相性に関して、特に慎重に吟味されねばならない。これらの審査において問題がなかつた場合、クマリ候補となつた少女は、いよいよ最後の試練を受けることになる。

ネパールや北インドでは毎年九月か一〇月頃に、ダサインというヒンドゥー教の大祭が盛大に行われる。この期間中にはいくつもの祭礼が執り行われるが、その第八日目に行われるのは、ドウルガーラ女神（それはタレジユ女神と等しい存在として信じられている）が水牛の悪魔を殺戮したことを祝う祭りである。この日には、王宮の北にあるタレジユ女神の寺院に続く内庭で一〇八頭の水牛とたくさんの山羊が屠られて、タレジユ女神に捧げられる。クマリの候補者は、屠られた水牛の生首（しかも二つの角の間には灯明が置かれている）が並べられた血なまぐさい内庭の中を、たつた一人でぐるっと周回して、タレジユ女神の寺院の戸口へ到達しなければならないとされている。その時に、もし少女に少しでも動搖した様子が見られたならば、彼女はクマリとなるに相応しくないと判断されるのだという。

この最後の試練に耐えて寺院の中に入ることのできた少女は、そこであらためて新しいクマリとして認められる。タレジ

ユ寺院の僧侶たちによつて彼女を正式のクマリとする即位儀礼が行われた後、少女は時間をかけて身支度を調える。額に第三の目が描かれ、赤い衣装を身にまとつて、蛇ナーグをかたどつた黄金のネックレスなど高価な装身具を身につける。このように飾り立てられた少女は、朝方になつて外に出て、信徒たちの前に姿をあらわす。そしてクマリの館へと向かつた彼女は、もはや祭日など特別な時を除いてそこを離れることはない。彼女はそれまでの名前を失つて、単に少女もしくは神の娘ディヨ・メイジュなどと呼ばれ、タレジユ女神になりかわつて信徒たちの崇拜を受ける。

クマリの生活

地上の女神となつたクマリは、今も旧王宮の脇にあるクマリの館に住まい、引退するまでそこでずっと生活する。それはカトマンドゥ盆地にはしばしば見られる、美しい彫刻を施した木製の窓枠が印象的な赤い煉瓦造りの館である。クマリとなつた幼い少女は、親や家族から離れて、この館の中でクマリ・マと呼ばれる世話役とその家族から世話を受けて生活する。もちろんまだ幼いこのクマリは、きわめて注意深く世話されるが、しかし一方で彼女は女神であるために、ネワール族の少女が普通に受けるような躾しつけを必ずしも受けないで成長することになると言われている。彼女にあらわれるちよつとした変化が、そのまま国や王の命運を示す予兆と考えられるため、その一舉一動には注意が払わなければならぬといふ。

生き神クマリは、この館の中でどのように過ごしているのだろうか。

まず彼女は朝目覚めると、世話役に助けられつつ赤い衣を身にまとつて、供養ブージャーを受ける。興味深いことに、それはヒンドゥー教と仏教と両方の僧侶によつて執り行われる。王室が信仰するヒンドゥー教のタレジユ寺院の司祭と、シャキヤ氏族が信仰する仏教の僧侶が、順番に彼女を供養するのである。ヒンドゥー教徒の王が彼女をタレジユ女神の化身として崇拜することはすでに述べたが、シャキヤ氏族をはじめとするネパールの仏教徒たちは、このクマリを仏教の尊格ヴァースンダラー女

神の化身として崇拜する。

朝食をとった後、ヒンドゥー教徒であれ仏教徒であれ、彼女を信仰する者たちが館を訪れて礼拝する。多くの場合、何らかの病やトラブルに悩まされる人たち（特に出血にまつわる問題が多いという）が、問題の解決を願つてやつて来るのである。またクマリが未来を見通せると信じる者たちは、何らかのお告げを得ようとして彼女を礼拝する。クマリはこうした信徒たちから供物を受け取つて、場合によつては彼らに手を触れるなどの「恩寵」（プラサード）を与える。しかし幼いクマリは時に気まぐれで、参拝や供物を拒否したり、信徒が望むような恩寵を与えない場合もある。いずれにせよ信徒たちは、そうしたクマリの行動を、女神の意志としてそのまま受け入れざるをえない。

このように日に何人かの礼拝者を迎えることに加えて、クマリは王室の、そしてネパール国家の守り神としていくつかの職務をこなさなければならない。重要なのは、年に何度も行われる重要な祭礼への出席である。言い換えれば、それらに出席する十数日を除けば、彼女は王宮横にある自分の館から外に出ることはない。

そうした祭礼の中で最も重要なと考えられているのは、九月のインドラ神の大行幸祭の期間内に行われる、三日間のクマリの行幸祭である。この祭礼は一八世紀にジャヤプラカーシュ・マツラ王によつて開始されたと信じられている。この日にクマリは壮麗な山車（だいしゃ）に乗つて、カトマンドウの街の中の所定のコースを行幸する。彼女の山車が行く先々で、王も民衆も頭を下げて彼女を出迎え、硬貨などを投げる。

クマリの行幸祭が終わつた後、インドラ神の大行幸祭の最終日に特別な儀式が行われる。行幸を終えたクマリのもとに王が来訪して、彼女に額（ぬか）に赤い粉で祝福のしるしを描き、彼の首に花輪を掛け（ティカ）て恩寵（プラサード）を施す。このプロセスの中には、王の女神に対する恭順と、王に対する女神の祝福という相互関係が示されている。人類学者たちは、こうした王とクマリとの関係の中に、先住民族であるネワール族と、後からやつて来たヒンドゥー王朝との間の融和と相互承認の痕跡を見出している。

インドラ神の大行幸祭と並び重要な祭礼として、ダサインの第八日目の黒い夜が知られている。これは先に述べた、彼女自身がクマリとして選ばれる際に、試練とされた儀礼に他ならない。毎年この日には、一〇八頭の水牛と数多くの山羊が首を切り落とされ、血なまぐさい供物としてタレジュ女神に献じられる。この儀式が、新しく選ばれたクマリの最初の試練とされるのは、つまりタレジュ女神の化身であるクマリは、自身に對して捧げられた供物を喜んで（動搖することなく）受け取らなければならないことによる。

退位の時

クマリはこのような職務を何年かの間こなした後、やがて退いて、生まれた家に戻る。引退の時期は、彼女が女神としての「神聖さ」を失った時とされている。それは多くの場合、彼女に何らかの出血が生じた時と言われ、よくあるのは、乳歯の生え替わりによる出血か、初潮が訪れた時である。しかしそれ以外でも、予期しない怪我や、必ずしも出血は伴わない大きな病気なども退位の理由とされる。ただし歯が抜けても、出血が多くない時には問題視されないことが多い。

いずれかの理由でクマリを退位する頃合いであると判断された場合、王室付きのタレジュ寺院の司祭たちが中心となつて、後任の選出に取りかかる。そして問題なく後任が決定したなら、新しいクマリが即位するのと交代して、彼女は実家に帰り、四日間とどまつた後に退位の儀礼を執り行う。蛇をかたどつた黄金のネックレスをはじめとするクマリのシンボルたる高価な装身具などを返却して、ごく普通の人間へと戻るのである。

とはいえた頃に家族から離されて「女神」として扱われ、王や人びとの崇拜を受けてきた彼女が、普通の女性としてその後の生活を送ることは、決して簡単ではない。彼女らにとつてさらに厄介なのは、元クマリの女性との結婚は、男性に不幸を招くと言い慣らわされていることである。よく知られている説明によれば、かつてクマリとして特別な力を宿していた

女性は、たとえクマリを退いて一般人に戻つたとしても、まだ体の中に女神の力をいくらか残しているはずで、そうした力は多くの場合、普通の男性に対して悪い方向へと働くのだという。それゆえに元クマリと結婚した男は不幸になるか、場合によつては若くして亡くなると言われている。クマリであつた女性は、結婚するべきではないとすら言われる。一九七二年のビジャイ・マッラの小説『神の乙女クマリ』には、結婚を求められた元クマリの、次のような台詞が見出される。

でもね、あなたも知つてはいるとおり、私は『神の娘』のクマリなのよ。私は一生の間、乙女のまま生きようと思つてゐるの。〔中略〕これも覚えておいてほしいのだけれど、私の中には力強い、恐ろしい女神がよく降りてくるのよ。神様はあなたのような人達を生贊いけどえに要求するにちがいないわ。いつ誰を殺すか、わからないのよ。

このような俗説や伝承は、クマリという制度が抱えている前近代的な、不幸な側面と言わねばならないだろう。

たくさんのクマリ

これまで見てきたのは、カトマンドゥ市内の旧王宮横にあるクマリの館に住む、いわゆるロイヤル・クマリの話である。しかしネパールには、この王室の守護女神として崇拜されるクマリの他に、数多くのクマリたちが存在する。

かつてカトマンドゥ盆地にカトマンドゥ、パタン、バクタブルという三つの王国が繁栄したマッラ王朝期にカトマンドゥ・マッラ王朝の守護女神とされたクマリの伝統は、そのまま現在のネパール国のロイヤル・クマリへと続いている。しかしこのマッラ王朝期には、パタン王国とバクタブル王国においても、それぞれクマリ崇拜が行われていたらしい。つまり遅くともマッラ王朝の末期である一八世紀には、三つの王国にクマリ崇拜が定着していたとすれば、本章の冒頭に見たようなジャ

ヤプラカーシュ・マツラ王がクマリ崇拜を始めたという伝承は、おそらく史実とは異なるだろう。実際、クマリに関する言い伝えには多くのヴァージョンがあり、いまだ多くのことが明らかにされないままにある。

これら三つの王家に由来するクマリたちは、各自が大きく異なった慣習を持つている。たとえばロイヤル・クマリについて權威があるパタンのクマリは、シャキヤ氏族ではなくてネワール族の僧侶カーストにあたるバジュラアーチャールヤ氏族の中から選ばれることになっていて、しかも自分の家で家族とともに生活することが認められている。そのためパタンのクマリの館は、祭礼の日にしか使われない。しかし彼女は、家族と暮らしながらも常に女神として扱われなければならず、クマリとしての姿をして毎日の供養を受け、人びとの礼拝などを受け入れる。

バクタプルには、エーカンタと呼ばれるかつての王室付きクマリに加えて、彼女を補佐する二人のクマリが存在する。このバクタプルのクマリは、他のクマリと比べるとかなり自由な生活を認められていて、実家で普通に暮らしながら学校に通つたり、家から出て友達と遊ぶことも許されている。ダサインなどの祭礼の日や、ときおり信徒の礼拝を受け入れる時にのみ、クマリとしての正装をするのである。

これら三王国に由来するクマリに加えて、地域で崇拜されたり、特定の僧院組織が中心となつて崇拜するクマリなど、さまざまなローカル・クマリが存在する。彼女らは日常生活においては、ロイヤル・クマリほどの制約を受けないことが多い。彼女らが行わねばならない祭礼や儀式、慣習などは、きわめて多様なものとなつていて、これらのクマリをすべて含めると、現在のカトマンドウ盆地には一〇人程度のクマリが存在している。

人権問題をめぐる議論

数百年前の昔から、カトマンドウ盆地の王たちは、生ける女神クマリの前に頭を垂れて庇護を願い、王国の未来を問う

ひご

てきた。そして人びとはヒンドゥーであれ仏教徒であれ宗教の違いを越えて、クマリの行幸にコインを投げ、また時には供物を獻じて、無病息災を願つた。クマリという制度はネパールの人びとの生活に深く根を下ろした慣習となつてゐる。しかし今、このクマリ制度のあり方に、批判の声が上がつてゐる。

まず誰もが思うことかもしれないが、このように幼い少女を家族のもとから引き離して、学校へも行かせず、同世代の子どもたちと隔離することは、その子の精神的な成長に悪い影響を及ぼしかねないのではないか。幼い時に適切な躾が行われることもなく、普通の人付き合いのやり方を身につける機会もないままにクマリから退位して、わずかな年金をあてがわれるのみで社会に放り出されるのは、人道的に許されないのではないかという批判がある。

もしかしたら元クマリが結婚後に夫を不幸にすると言われるのは、幼い頃にずっと女神として振る舞うことと要求され、他人に頭を下げるなどを知らないまま成長した少女が、ネワール族の妻としての生活に適応できず、多くのトラブルを抱えこみやすいことを意味しているのかもしれないという意見もある。とは言つても、実際の元クマリのその後を調べてみると、少なくとも現代の元クマリたちはほとんどが結婚し、子どもにも恵まれてることが分かるのだが。俗説はあくまでも、俗説にすぎないのである。

しかし新しい生活に適応することが、元クマリたちにとつて困難であることは間違いない。一九七八年から八四年までロイヤル・クマリを務めたアニタ・シャキヤは、自分がクマリであつた頃を懐かしみ、当時こそが自分の人生で最も輝いていた頃であると述べている。彼女は社会生活にいささかの困難を感じているようで、一日のほとんどを実家に籠もつて過ごし、家族のために家事をしたりテレビドラマを見たりして過ごしている。彼女は、元クマリは結婚するべきではないという伝統的な考え方賛成で、結婚に対してはきわめて消極的である。

二〇〇五年には人権活動家のブン・デーヴィー・マハルジヤンによつて、クマリの制度が子どもの、そして女性の人権を侵害するものであるという訴えがなされた。これに対して、クマリ制度はネワール族の伝統文化であつて、すべての民族は

そうした伝統を保持する権利を持つのだから、それをとやかく言うべきではないとの反論も数多くなされたが、結局のところ最高裁判所は委員会の判断にもとづいて二〇〇八年、クマリは教育を受ける権利、自由に移動し、適切な医療処置を受ける自由を持つと裁定した。

そうした時代の意識の変化を受けて、新しい世代のクマリたちは学業にも力を入れているようである。二〇一〇年には、パタンの現役のクマリであるチャニラ・バジュラアーチャールヤが、クマリ在位中に中等教育修了試験を受験したことで話題となつた。「英語は得意なの。問題にはぜんぶ答えられたわ」とインタビューに答えるこの一五歳の女神は、個人教師の指導を受けて試験に臨んだとのことである。彼女はクマリを引退したら、経済学を勉強したいと考えている。彼女の母親もまた、彼女が勉強を続けることに賛成している(『カトマンドウ・ポスト』紙、二〇一〇年三月二七日)。

また二〇一〇年に九歳でチャニラの後を継いだサミタ・バジュラアーチャールヤも、毎日三時間の個人授業を受けている。彼女は伝統的なパタンのクマリに課された制約ゆえに、家からあまり出ることはできないが、普段は与えられたコンピュータでゲームをしたり、テレビでアニメを見て過ごし、週末などには友達を家に呼んで遊んだりもしているようである。しかし赤い衣装と第三の目を付けて信徒の前に姿をあらわす時、彼女は生ける女神として人びとに恩寵を与える特別な存在となるのだ。

元クマリの告白

カトマンドウのタメル地区にある小さな書店から、二〇〇五年に『女神から人間へ』と題された小さな本が出版されると、それはネパールのみならず世界の各地で大きな反響を呼んだ。著者はラシュミラ・シャキヤ、一九八四年から九一年までロイヤル・クマリを務めた女性である。クマリと同じ深紅に彩られたこの美しい本は、四歳でクマリに選ばれた彼女が一二歳

まで生ける女神として過ぎた日々の思い出と、退位してごく普通の少女となつた彼女が苦難に満ちた日常生活に立ち向かつていく過程をほのかなユーモアをまじえて情感豊かに描き出している。

ラシュミラはこの本の前半部で、世間において流通しているクマリのイメージ、クマリに関して知られていることの多くが無知と誤解に満ちていることを鋭く告発している。たとえば世間で言われるクマリの三二相は、さほど厳密なものではないとして、「そもそも菩提樹のような体、獅子のような胸、アヒルのような声をしてるって、どんな四歳児なのかしら?」と茶目つ氣たっぷりに指摘している。そして彼女自身の退位に関しては、特に初潮や怪我などの出血があつたわけではなくて、単に彼女が一二歳になつたのを機に、次の後継者が探されたにすぎなかつたと説明している。

また元クマリとの結婚が不吉とされるという俗説に関しても、彼女は強く否定している。昔の元クマリたちがその後いかなる人生を送つたかは今となつては知る術もないにせよ、少なくとも現代の元クマリのほとんどは、適齢期が来ると結婚しているし、結婚後に夫を不幸にした、もしくは夫に早く死なれたクマリの話も、聞いたことがないとのことである。たしかに昔はそういうこともあつたかもしれないけれど、でも貧しいネパールにおいて新婚の夫が亡くなることは、それほど特別なことではなかつただろうとラシュミラは言う。

新しいクマリを選ぶ最後の試練として広く知られる、ダサイン八日目の深夜に屠られた一〇八頭の水牛の生首が並ぶ中をクマリがただ一人で周回するという話も、ラシュミラはきつぱりと否定する。この儀礼はクマリにとつてたしかに重要なものではあるが、新しいクマリを選別するプロセスとはまったく関係ないと彼女は言う。新しいクマリを驚かせたり、怖がらせたりする試練などは存在しない。それに深夜の儀礼でクマリが怖がつたという話は聞かないけれど、もし怖がつたとしてもそれでクマリの適性が問題視されるということはおそらくないだろう、とも。ちなみに彼女が覚えている限り、ダサイン八日目の夜に供犠で屠られる水牛の首の数は、せいぜい一〇頭くらいのものだつたという。

親や家族と離れて暮らすクマリの生活は、たしかに同世代の普通の少女とは大きく異なつたものとならざるをえない。し

かしながらラシユミラの語るクマリ時代の思い出には、彼女がクマリの館で世話役の家族と一緒に暮らす中で、みんなでテレビを見たり、子どもらしくちょっとしたいたずらに興じたりする様子が描かれており、ほつとさせられる。また学業に関しては、彼女の場合には外部から個人教師が勉強を教えに来ていたとのことである。全知であるはずの女神に対してもわざわざ何か教えようとするような輩やからには死が待っているという、教える者の気を萎なえさせるような言い伝えすらあるというのに、先生が来てくれたことはとてもラッキーだったと彼女は述べている。

ラシユミラの見るクマリの今

女神の目から見るこの世界は、いかなるものだろうか？ ラシユミラの思い出は、そうした疑問にある程度の答えを与えてくれる。彼女は自分を訪れる人びとが抱える問題（その多くは、子どもの病気などであったという）に対し、幼い少女神らしい気まぐれさとともに、時に真摯しんしに対応した。たとえば七歳になるのに、まったく言葉を発さない少年が母親に連れられて毎日クマリの参拝に訪れていた頃、ラシユミラは自分に彼を助ける能力があることを確信していた。だから少年の母親がラシユミラを礼拝している間、彼女はこの少年を助けることに精一杯集中していたという。その甲斐かいあつてか、少年は後に言葉を話すようになったそうである。

彼女がクマリを退位する直前の一九九〇年、民主化闘争がネパールを揺るがした。六〇年に当時のマヘンドラ国王がクーデターを起こして議会を解散して以来、この国は政党政治が禁止され、パンチャーヤト制と呼ばれる制度によつて国王が権力を独占してきた。しかし九〇年代の激しい民主化闘争の結果、ビレンドラ国王はパンチャーヤト制の廃止を宣言し、三〇年ぶりに政党政治が認められることになったのである。ラシユミラは路上での連日の大騒ぎを、クマリの館の中から目撃していた。この時期の彼女は、発熱や突然の涙といった症状に悩まされていたが、それは王と強い結びつきを持つ女神が、王

から主権が奪われつたることを感得したために生じるごく当然の反応として周囲に受け止められた。

ラシユミラは八年間を生き神として過ごした後、一二歳の時に退位して実家に帰った。しかしやはり、その後の彼女の生活は、決して簡単なものではなかった。遠出する時には輿に乗るか、もしくは年長者の男性に担がれていた彼女は、長い時間歩くことすらうまくできなかつたという。また女神であればごく自然に許されるような振る舞いが、もはや普通の少女となつた彼女には許されないことに、大いに悩まされた。自分の要求を引っこめ、相手と妥協するということが苦手な元クマリは、なかなか周囲の人びとの関係を上手に取り結ぶことができなかつた。しかし時間が経つて少しづつ新しい環境に慣れていく中で、やがて彼女の姉妹が彼女のことを、それまでの神の娘ディヨ・メイジュという呼び名ではなくてラシユミラという名前で呼びかけるようになる場面は、我々の胸を打つ。長い時間と多くの努力の末に、女神はとうとう人間へと戻つたのだ。

通りの教師がいたとはい、学業の遅れはその後のラシユミラにとつて大きな問題であった。しかし周囲の助けもある中で、彼女の努力はやがて実を結んだ。中等教育修了試験を無事クリアした彼女は、大学に進んで情報技術を学んだ。卒業後はソフトウェア開発の仕事に携わつて「クマリで初めてのＩＴ技術者」となつて働いている。またこの本を出版して以降、さまざまな社会活動の場に姿をあらわす機会も増えているようである。

ラシユミラは、クマリ制度が子どもの人権を奪うものであるとの見方には賛成しない。クマリとしての制約の中で、少女は可能な限りのケアを受けているし、クマリを退いた後に訪れる日常生活の適応も、決して困難すぎるわけではないと彼女は考える。問題なのはクマリ制度それ自体ではなくて、クマリに関して誤った情報を垂れ流すマスメディアのセンセーションナリズムなのだと。血なまぐさい水牛の生首に囮まれて即位する神秘的なクマリという古くさいイメージであれ、旧弊な伝統の哀れな犠牲者としてのクマリという政治的イコンであれ、いずれにしてもクマリの実像からはかけ離れている。クマリという伝統は、ネワール族の誇る文化としてこれからも続けていくべきだと彼女は考えている。その一方でかつてクマリであった人間として、この制度にさまざまな問題があることも認めている。彼女はクマリを「日常生活において、あ

る程度は女神というよりは普通の少女のように」扱うべきだと述べ、また元クマリたちに年金を与えるよりは、その後のキヤリアのための奨学金を充実させるべきだと提言している。そして、後に続くクマリたちのために、「私たち元クマリは団結しなければならない」と述べている。

激動のネパール

ラシュミラが一九九一年にクマリの館を去る頃から、この国はさらなる政治的変動へと向かっていく。一九九〇年の民主化運動の結果として誕生した連立内閣にはまるで指導力がなく、国民を大きく失望させることになった。そんな中で毛沢東主義派が反政府闘争を開始する。地方の貧困層から強い支持を受けた彼らは、すぐに農村部を中心とするかなりの地域を実効支配するに至った。

そして二〇〇一年の六月、ネパール王室を悲劇が襲う。ビレンドラ国王と王妃アイシェウワルヤ、その他数名の王族たちが、ディ・ペンドラ王子によって殺害されたのである。これは泥酔した王子が突然に銃を持ち出し、王やその場にいた王族たちを射殺して、その後に自殺を図った（重体となり、三日後に死亡）ものとして発表された。動機は現在に至るまで明らかではないが、王子の希望する結婚相手を国王夫妻が認めなかつたことが一因であろうと伝えられた。しかしながらこの事件に關しては不可解な点があまりに多く、真相は別にあるという声も根強い。

たまたまこの事件の現場に居合わせなかつたために命拾いした、王の弟ギヤネンドラ（事件の黒幕は彼であるという巷の声は大きい）が国王として即位すると、彼はマオイストがさらなる攻勢をかける中で、二〇〇二年、二〇〇五年と二度にわたつてクーデターを起こして内閣、議会を解散し、ふたたび王の直接統治を開始する。これに対して、王党派以外の七政党は、マオイストとも連携して国王と対決した。二〇〇六年四月にはネパールの各地で激しい民主化闘争が展開されること

になり、その結果、王は親政を断念し、議会の再開と権力を放棄することを約束した。政府とマオイストとの間には和平が結ばれ、議会では新しい憲法が起草された。そして二〇〇八年にはいよいよ正式に王制が廃止され、ネパール連邦民主共和制が誕生した。

このようなめまぐるしい社会変動の中で、クマリたちのあり方にも大きな変化が訪れている。先に見たようなクマリの人権に対する配慮もまたその一つと言えるだろう。かつて神秘のヴェールに包まれていたクマリ制度が明るみに出され、さまざまな議論の対象となること自体は、クマリたち自身の幸せを考えるなら歓迎されるべきことのようと思われる。ただし注意しなければならないのは、クマリの人権問題を叫んで制度の廃止を訴える声が、しばしばクマリ制度を支えるネパール王制に対する批判とともに上げられてきたという経緯である。ラシユミラをはじめとする多くのネワール族の人たちは、マオイストなどの政治勢力が、自分たちの伝統文化を破壊してしまうのではないかと危惧している。

王制が廃止されてギャネンドラ国王が王宮を後にする、王室付きの司祭たちもまた解散することになった。彼らはこれまで長い間、新しいクマリの選出において中心的な役割を担つてきたが、以降は政府から委託された文化問題を監督する信託組織がその任を引き継ぐことになった。

同じ年にバクタブルのクマリ、サジヤニ・シャキヤが退位することになると、この新しい信託組織はすぐにシユレーヤ・バジユラアーチャールヤを新しいクマリとして選出した。このことに対して、新しいクマリの決定プロセスの中に政党政治の力学が及ぶことを恐れる人たちは強く反発した。担当者は、王制をやめたからといって古くからある伝統をすべて否定するわけではないのだと発言したが、その言葉は反対者たちを十分に納得させるものとはならなかつた。新しく世俗国家として生まれ変わったネパールにおいて、クマリという存在がいかなるものとなるべきか、いまだ議論は続いている。

今のところネパール政府は、インドラ神の大行幸祭や、その期間中に行われるクマリの行幸祭などに、退位したギャネンドラ王の参加を認めてはいない。かつて祭礼のクライマックスにおいて王が演じた施主としての役割は、今では大統領が

スポンサー

演じている。民主化運動の結果、それまでのヒンドゥー国家を捨てて、政教分離の原則にもとづく世俗国家という方針を打ち出した新しいネパールにおいて、こうした宗教儀礼に政府の要人たちが列席し、国王に代わってクマリを礼拝することが、はたして妥当であろうかという批判は、ないわけではないが実際それほど強くはない。むしろマオイストを含む多くの政治家たちは、クマリ制度や諸々の宗教的祭礼などを、ネパールという国が抱え持つ文化的遺産として位置づけることで、それを国民統合に利用しようとしている節がある。

クマリたちの未来

シユレーヤの前任者サジャニ・シャキヤは、一九九九年に即位して二〇〇八年に退位するまで、九年の間バクタブルのクマリを務めたが、自らが関わったドキュメンタリー映画が上映される映画祭に参加するため、まだ在位中の二〇〇七年に渡米して、問題になった。というのもバクタブルのクマリは家族とともに生活して、普段は普通の少女のように学校に行くことも許されるが、国外に出ることまで許されるのかどうか議論が生じたのである。彼女がこの渡米によって聖性を喪失した、クマリとしての資格を喪失したという声は強く、それは翌年に彼女がクマリを退位する一つの原因となつたと言われている。

現代社会において、クマリを古い館の中に隔離しておくことは、もはや不可能であり（そのことは裁判所の裁定からも明らかである）、こうした出来事は今後ますます増えていくだろう。ならばグローバル化した世界の中で、クマリという制度はその神秘性をはぎ取られ、無害な伝統文化となつて、ネパール観光の目玉商品へと成り下がるのだろうか。シャキヤ氏族の人びとがカトマンドゥの街中で売っている、お土産物の仏像や仏画のようだ。

それとも国民国家の統合の旗印として、新しいネパールという国の「守り神」になるのだろうか。もしくはネワール族の民族文化として、もしくは旧王党派のイコンとして、今の国民国家を分断する方向で利用されるのか。

クマリという存在の社会的な位置づけがいかなるものへと変わっていくのかは、このネパールという国の先行きとともに、現在のところまったく見通しがつかない。しかし一つ言えるのは、たとえ世俗化の波を受けたとしても、カトマンドゥの街の人びとがクマリに対する信仰心を捨ててしまうようなことは、どうやらなさそうだということである。政府の要人が出席しようとしまいと、近年のクマリの行幸祭は、以前にも増して活況を呈している。二〇一二年のバクタブルでのクマリ行幸祭では、それまで山車を引くことが許されていなかつた女性たちが、初めて山車を引く役を担つたことで大いに注目を集めた『カトマンドゥ・ポスト』紙、二〇一二年一〇月四日)。

そのありようは変われども、庶民レベルでの素朴なクマリ信仰はそう簡単に変わるものではなく、個人的な信仰として生き残るだろう。庶民がクマリに対して抱く個人的な信仰と、公的空間において国家の祭事行為として行われるクマリ崇拜との間には、そもそも乖離がある。制度としてのクマリ崇拜は、歴史的・地域的な制約を受け、そして政治的な機能を果たさざるをえないが、それは人びとがクマリによせる祈りや願いには、あまり関わりがない。クマリ崇拜の最も古い形態は、王権とは関係のない、庶民による慎ましやかな生き神信仰であったと言われている。ならばそうした個人の信仰そのものは、今も昔も大きく変わることなく、これからも続していくのだろう。ただそうした信仰の、社会的位置づけに揺らぎが生じているのにすぎない。

カトマンドゥを守護するこの聖なる女神は、もしかしたら人間たちの弱さに嫌気がさしてまた姿を消してしまうのかもしれない。しかしたとえ王の前から姿を消したとしても、彼女は生ける女神として、すぐ人に人びとの間に降りてくるだろう。現在のクマリ制度がどのように変わろうとも、人びとが小さな祈りを捧げる相手としてのクマリは、街角でひつそりと生き続ける。

註

(註1) 仏の眉間にある白い巻き毛のこと。

(註2) 仏または菩薩の頭の頂上に隆起した肉塊のこと。

(井田克征『世界を動かす聖者たち』による)

令和 6 年度 AO 入試問題集 (教育学部)

公表期限：2027 年 3 月末

東北大学アドミッション機構

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験①問題

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
文 学 部	10:30~11:30	
教 育 学 部		11 ページ
法 学 部	(60 分)	

注意事項

1. 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
2. この「問題冊子」は 11 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
3. 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
4. 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
5. 「解答用紙」の受験記号番号欄（1枚につき1か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
6. 解答は、必ず「解答用紙」の指定された箇所に記入してください。
7. 特に指示がある場合以外は、日本語で記入してください。
8. 解答に字数の指定がある場合、句読点、数字、アルファベット、記号も 1 字として数えてください。
9. 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

———このページは白紙——

——このページは白紙——

1 次の英文を読み、以下の問い合わせに答えなさい。

As an increasing number of elementary, middle and high school students in the U.S. have begun to identify as transgender, school leaders have struggled to figure out how to respond, and how – and whether – to communicate about their actions to parents.

In Maryland, for instance, three sets of parents filed a federal lawsuit in 2020 that challenged school guidelines allowing students to express their gender identities at school. In some situations teachers and other school staff are asked not to notify parents ⁽¹⁾ they are doing so.

The federal trial court ruling, which has been appealed, determined that parents did not have a fundamental right to be informed promptly if their children chose to identify as another gender while at school.

The judge tried to balance both parents' rights under the due process clause of the Constitution and states' rights to regulate public education, even if they conflict with parental wishes.

⁽²⁾ The judge found that while school board officials intended to ultimately inform parents, if educators had concerns about a child's safety they would hold off on doing so.

The board's rules, the judge wrote, "keep a student's gender identity confidential ... out of concern for the student's well-being." The rules also call for a "comprehensive gender support plan that anticipates and encourages eventual familial involvement wherever possible."

In short, parents have a general right to know about their children's activity in school. (3) to privacy and personal safety.

The Maryland case is by no means the only case in which school officials have been caught between students' right to privacy and parents' right to know. As researchers who specialize in education law, we have analyzed similar cases in Iowa, Massachusetts, Wisconsin and Virginia.

Regardless of how the cases from Maryland and elsewhere play out, this issue is likely to continue to generate additional controversy and *litigation.

(4) Disagreements between parents and schools over education are not new. In 1925, in *Pierce v. Society of Sisters*, a dispute from Oregon, the Supreme Court upheld the rights of parents to send their children to schools run outside the public education system.

The justices famously wrote: “The child is not the mere creature of the state; those who nurture him and direct his destiny have the right, coupled with the high duty, to recognize and prepare him for additional obligations.” This signaled clearly that parents have rights over how their children are raised and educated.

But the U.S. Supreme Court has not yet decided clearly (5). As a result, an *appellate court in New Jersey observed that courts have held that “in certain circumstances the parental right to control the upbringing of a child must give way to a school’s ability to control curriculum and the school environment.”

Courts have even decided that there may be times when school or other public officials have legitimate interests in intervening where parents would typically have free rein, to assist or protect children. For example, educators might choose to keep information about students’ gender identity from parents if school staff members have reason to believe the students would be kicked out of their houses, physically abused, or forced to participate in abusive counseling programs, such as conversion therapy.

At the same time, school officials must ensure protection of students’ rights. In particular, many states have laws requiring school board officials to protect their students from discrimination and violations of privacy.

(中略)

School staff members have legal obligations to protect students’ privacy. According to the 3rd U.S. Circuit Court of Appeals, “It is difficult to imagine a more private matter than one’s sexuality and a less likely probability that the government would have a legitimate interest in disclosure of sexual identity.”

Even so, schools often want parents to be involved in their children’s education and the wider school community. This regularly puts educators in the sensitive position of having to protect student privacy while respecting parental rights to raise their children in accordance with their values.

(6)(　)(ア)(　)(イ)(ウ)(　) balance parental rights to direct the lives of their children and the role of educators in safeguarding the privacy rights of students – and whether the Supreme Court can, or will, ever set clearer rules in this important topic.

(Charles J. Russo, Maggie Paino, and Suzanne Eckes, “Rights of transgender students and their parents are a challenge for schools, courts,” *The Conversation*, Feb 6, 2023. より一部改変)

*litigation 訴訟 *appellate 上訴の

問1 下線部(1)は具体的に何を意味しているのか、本文に即して説明しなさい。

問2 下線部(2)について、doing so が指すことを明らかにして、日本語に訳しなさい。

問3 空欄(　　3　　)に入る最も適切なものを以下のア～エの中より1つ選び、記号で答えなさい。

ア Therefore, parental rights must not be limited by students' rights

イ Therefore, students' rights must not be limited by parental rights

ウ However, parental rights can be limited by students' rights

エ However, students' rights can be limited by parental rights

問4 筆者は下線部(4)のように主張する根拠としてどのような具体例をあげているか。本文に即して40字程度で説明しなさい。

問5 空欄(5)に入る最も適切なものを以下のア～エの中より1つ選び、記号で答えなさい。

- ア where the duties of students end and the duties of their teachers begin
- イ where the rights of students end and the rights of their teachers begin
- ウ where the duties of parents end and the duties of their children begin
- エ where the rights of parents end and the rights of their children begin

問6 下線部(6)の()内に、文脈に合うように以下の①～⑦の語を最も適切な順序に並び替えて入れるとき、(ア)(イ)(ウ)に入る語の番号を答えなさい。ただし文頭の語も小文字になっている。同じ選択肢を複数回使用しないこと。

() (ア) () () (イ) how (ウ) ()

- ① it
- ② to
- ③ seen
- ④ will
- ⑤ be
- ⑥ remains
- ⑦ courts

2 次の英文を読み、以下の問い合わせに答えなさい。

*Fertility rates are falling across the globe – even in places, such as sub-Saharan Africa, where they remain high. This is good for women, families, societies and the environment. (1) So why do we keep hearing that the world needs babies, with *angst in the media about maternity wards closing in Italy and ghost cities in China?

The short-range answer is that, even though this slowdown was predicted as part of the now 250-year-old demographic transition – whose signature is the tumbling of both fertility and mortality rates – occasional happenings, such as the publication of US census data or China's decision to relax its two-child policy, force it back into our consciousness, arousing fears about family lines rubbed out and diminishing superpowers being uninvited from the top table.

The longer range answer is that (2) our notion of a healthy, vibrant society is still rooted in the past. The inevitable byproduct of the demographic transition is that populations age, in a chronological sense, but life expectancy, and particularly healthy life expectancy, have increased dramatically over the last half-century, and the societal definition of “old” has not kept up (though artistic experiments such as casting 82-year-old Sir Ian McKellen as Hamlet might help to challenge age-related stereotypes).

In the 19th century, a country needed youth to operate its factories, consume what they *churned out and constitute a fighting force in times of war. That became less true over the 20th century, and in the 21st it bears very little relation to reality. More and more of the jobs that require stamina and strength – including fighting – are done by machines, while a nation’s products are consumed globally.

Gross domestic product (GDP) might influence a nation’s geopolitical standing and a large GDP fills government *coffers, but (a). Twenty-somethings and 50-somethings have different kinds of intelligence, says gerontologist Sarah Harper of the University of Oxford, but both play a part in entrepreneurship. And if you care about human wellbeing (3) you () (ア) () (イ) () (ウ) () ().

Demographer Ron Lee of the University of California, Berkeley, and others have shown that GDP per person, and hence living standards, are highest when fertility falls just below replacement level (around 2.1 births per woman) – to 1.6 or even less.

When fertility is either much higher or much lower than that, quality of life falls off again. Lee would be worried if he was in South Korea at 0.8 births per woman, or China at an estimated 1.3, he says, but England and Wales (1.6), the European Union (1.5) and the US (1.6) are all hovering around ⁽⁴⁾ that sweet spot.

That doesn't mean we don't have to adapt to the new reality. We do, in part because the way many countries distribute resources is also rooted in the 19th century and is unsustainable. (b), for example. Although creativity doesn't fall off with age, skills change, and we need to replenish those that are lost from the workforce. And when elderly people do finally stop being productive, we need to find new ways and new workers to care for them.

(c), smoothing the demographic transition for richer countries while redistributing capital to poorer ones where fertility rates remain relatively high. The evidence is overwhelming that, in general, immigration is good for societies – economically, but also socially. Closing doors to it is, in this sense, self-destructive.

So there's work to do, but in a world in the grip of a climate crisis, to which we've added 7 of the nearly 8 billion humans in just a couple of centuries – and to which we will almost certainly add another 3 billion before our numbers start falling again – it's absurd to say that what's lacking is babies.

⁽⁵⁾ In fact, trying to force people to have either more or fewer babies turns out to be rather pointless. Despite China's decades-long one-child policy, its fertility decline hasn't been dramatically steeper than elsewhere in East Asia. France's *valiant efforts to encourage large families with financial incentives haven't made much difference either, compared with the rest of Europe. As child mortality drops, and women's health and education improve, fertility falls. Parents choose to invest more time, money and love in fewer children. You can sway their decisions slightly by making life harder or easier for families – through childcare provision, say, or parental leave allowances – but the demographic transition is unstoppable.

(Laura Spinney, "Why declining birth rates are good news for life on Earth," *The Guardian*, Jul 8, 2021. より一部
改変) (Copyright Guardian News & Media Ltd 2024)

*fertility rates 出生率

*angst 不安全感

*churn out 量産する

*coffer 財源, 金庫

*valiant 勇ましい

問1 下線部(1)の質問に対しての答えの1つとして筆者があげているものはどれか、次のア～エより最も適切なものを1つ選び、記号で答えなさい。

- ア イタリアの産科病棟の閉鎖や中国のゴーストシティなどの状況は他国のこととして冷静にとらえることができるから。
- イ 人口減は、人口動態の変化の一環としてはまったく予測されていなかったから。
- ウ 人口減の特徴は出生率と死亡率の両方の低下であるから。
- エ 家系が絶えてしまうとか、超大国でなくなってしまうというような不安を感じるから。

問2 下線部(2)で述べられている “our notion of a healthy, vibrant society” とは具体的にどのような考え方か、本文に即して説明しなさい。

問3 空欄(a)～(c)に入る最も適切なものをそれぞれ次のア～エより選び記号で答えなさい。ただし文頭の語はすべて小文字にしてある。同じ選択肢を複数回使用しないこと。

- ア immigration – which tends to bring in young adults – is a critical component of that adaptation
- イ there's no evidence that young workers are any more productive than older ones today
- ウ more people need to work longer
- エ more and more consumers will get interested in local production for local consumption

問4 下線部(3)の()内に、文脈に合うように以下の①～⑧の語句を最も適切な順序に並び替えて入れるとき、(ア)(イ)(ウ)に入る語句の番号を答えなさい。同じ選択肢を複数回使用しないこと。

you () (ア) () (イ) () (ウ) () ()

- ① more attention ② should ③ GDP ④ per country ⑤ per person
- ⑥ to ⑦ pay ⑧ than

問5 下線部(4)は、具体的に何を意味しているか、本文に即して説明しなさい。

問6 筆者は下線部(5)のように主張する根拠としてどのような具体例をあげているか。本文に即して2点、説明しなさい。

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験②問題

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
教 育 学 部	13:00~14:30 (90 分)	7 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 7 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1 枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がある場合以外は、日本語で記入してください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

——このページは白紙——

——このページは白紙——

問題

次の文章および図を読み、以下の問1～問4に答えなさい。

【文章】

「目標数値」は溢れるが「目的・意味」が語られない職場

いま、組織も個人も「仕事・キャリア」をめぐり、取るべき方向性を失っています。最終的に何を求めて働いていくことが幸福なのかが誰しもよくわからなくなっています。企業の経営層や人事部門は従業員に対し、「もっと生産性を上げろ」「キャリア自律せよ」というだけで、理念軸をもったメッセージ・人材育成方針を打ち出せていません。もちろん知識やスキル習得のための教育は熱心に施します。しかし、それは事業の競争力を保ち、組織を存続させるために人的資源をさびさせないという理由にすぎず、一人一人の従業員を全人的にどう育み、どんな働くことの醍醐味を味わつてもらいたいかという哲学は希薄です。

働くことについての幸福観などというのは個々人の問題であって、会社組織が立ち入る問題ではないと考える経営者・人事担当者も多くいるでしょう。「会社は事業をやるところなのだから、我々は事業遂行に見合った技能を持つヒトを集め、一方雇われたヒトは命じられた成果を出し、対価を受け取る。雇用契約で成り立つ組織は、それ以上でもそれ以下でもない。事業現場に個人それぞれが感じるフワフワした価値観を持ち込むことは不要」と。冷徹に筋が通っていると言えばそうなのですが、実際は、経営者や人事担当者にとって、そこを触れないほうがラクだからという理由もあります。いざれにせよ、こうした功利的・機械論的な考え方方が一方的に進んだ結果、⁽¹⁾何が起きたかと言えば、メンタルを病む従業員の増加です。

科学的合理性に基づいた手法が職場のいたるところに導入され、ますます先鋭化する中、従業員の評価制度や業務管理手法も数値づくめになっています。MBO(目標管理制度)や KPI(重要業績評価指標)など、マネジャー層に課す研修も花盛りです。のために、目標数値は溢れるが、事業をやることの意味・働くことの目的を語らない職場が数多くあります。

多くの従業員は目先の業務処理と短期的な数値に追われるばかりで、中長期に自組織が、そして自分がどこに向かうかわからないまま、とりあえず担当事業の存続と自分の生活維持を目的にして働いています。もちろんいろいろな業務に携わることで能力が身についたり、刺激的な出会いがあったりと、仕事は食うため以上のことを与えてくれると実感できるときもあるでしょう。が、こうした成長感や充実感は30代半ばまでがせいぜいで、それ以降は数値管理によるプレッシャーによって働くされ続ける状態になっていきます。

「能力・処し方」主眼のアプローチ vs「観・在り方」主眼のアプローチ

私はさまざまな企業で、20代から50代の層に向けキャリア開発研修を行っています。独立した2003年当時、HR(ヒューマン・リソース、企業の人事部門の略称)の世界での旬のテーマは「キャリア自律」でした。多くの企業で終身雇用制度のひび割れが生じる中、企業は組織にぶら下がる「他律的キャリア」から、どこの企業からも雇われうる「自律的キャリア」への意識大転換を昭和育ちのサラリーパーソンたちに迫ったのでした。「キャリアデザイン」「キャリアパス」「ポータブルスキル」「エンプロイアビリティ」「ハプンスタンス理論」などもこうした文脈で輸入紹介された概念でした。

そのために当時のキャリア研修の内容はと言えば、それまでの自分の能力を棚卸ししたり、「CAN(できること)・MUST(やらねばならないこと)・WILL(やりたいこと)」で自己分析したり、社内の能力等級制度が要求するスキルの習得計画を練り、キャリアプランづくりをするものでした。確かにこうした研修を受けて、自分の能力度合いに気づき、能力開発の計画を持つことで、何か自分はキャリアの軌道に乗っているという安心感、あるいは、自分は他の会社からも雇われうる人材になるという自信を多少得ることはできました。

しかし私自身、この「能力」の自己分析と習得計画に主眼を置いたアプローチでは深い自律意識を醸成させるには不十分であると考えていました。「CAN・MUST・WILL」は有益な内省フレームではあるものの、その根底にある「WHY(私はなぜこの職業を選んでいるのか)・WHAT FOR(きょうのこの仕事は世の中の何につながっているのか)」を問うてはいません。WHYやWHAT FORに対する答えが肚にすどんと据わってこそ、「CAN・MUST・WILL」はより生き生きと見えてくるのです。

言い方を変えれば、「何々の能力を磨けばキャリア形成がうまくできる」ではなく、「自分の能力を何に使って世の中に貢献していくか、それを軸にして働く・生きるプロセスからキャリア形成はなされていく」という思考順序です。後者のために必要なもの——それは「観」です。「能力」主眼のアプローチではなく、⁽²⁾「観」主眼のアプローチ、これが私の取った研修コンテンツ開発の基本でした。それは必然的に、抽象的・哲学的な思索を伴うものでした。しかし、人事担当者にも、受講者にもわかりやすいのは「能力」アプローチのほうです。当初は、私の打ち出す「仕事観・キャリア観をつくる」「処し方ではなく、在り方を軸に考える」のようなアプローチに反応はさほど強くありませんでした。

(出典:村山昇 『キャリア・ウェルネス「成功者を目指す」から「健やかに働き続ける」への転換』
日本能率協会マネジメントセンター 2021年 6-9頁より作成)

【図】

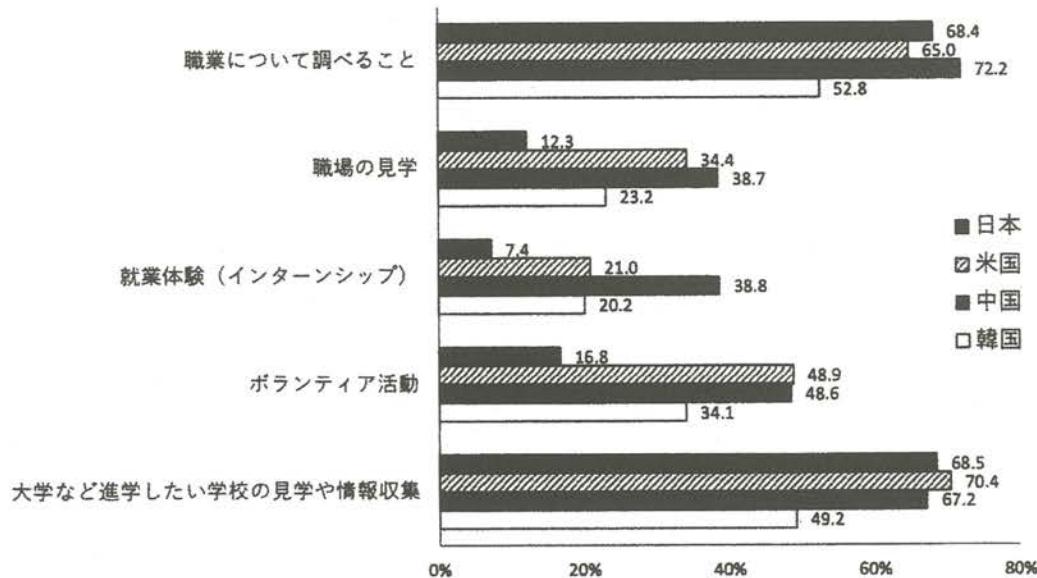


図1 将来の生き方や進路にかかる活動への取組（「取組をしている」と回答した割合）

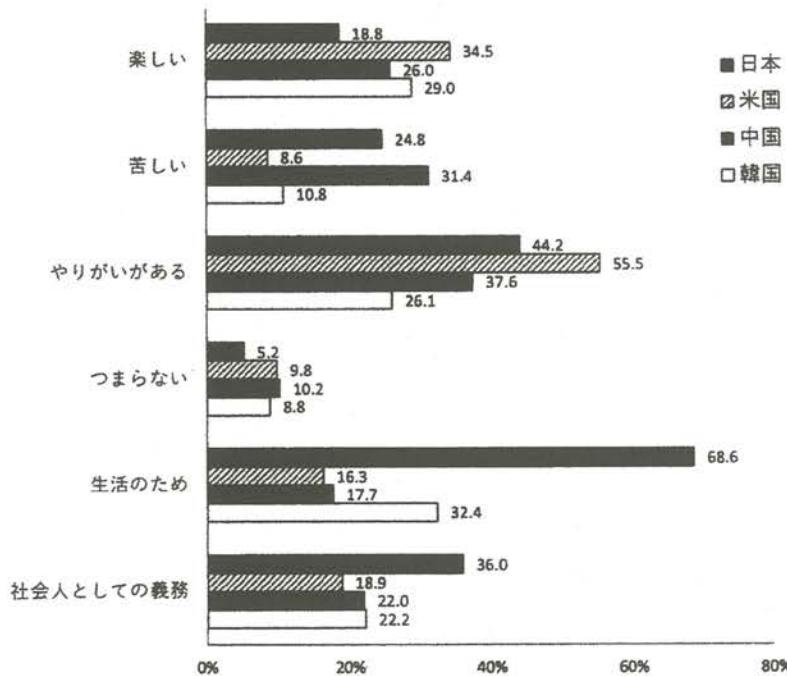


図2 「仕事」「働くこと」のイメージ（「とてもそう思う」と回答した割合）

（出典：高校生の進路と職業意識に関する調査報告書-日本・米国・中国・韓国の比較- 独立行政法人国立青少年教育振興機構 2023 12 頁、 19 頁）

【設問】

問 1

下線部(1)に「何が起こったかと言えば、メンタルを病む従業員の増加です」とあるが、なぜこのような結果が生じたと筆者は考えているのか。本文の内容に基づいて150字程度で説明しなさい。

問 2

下線部(2)に「『観』主眼のアプローチ」とあるが、これはどのようなものか。本文の内容に基づいて100字程度で説明しなさい。

問 3

示されている図は、「仕事」や「働くこと」に関する経験およびイメージについて、高校生に尋ねた調査の結果である。2つの図からどのようなことが読み取れるか説明しなさい。

問 4

働き方が多様化する現代におけるキャリア形成の問題に対して、日本の学校や教育者にはどのような役割やあり方が期待されるか。文章および図の内容をふまえ、あなたの考えを400字程度で述べなさい。

令和6年度AO入試（総合型選抜）Ⅲ期面接試験

令和6年2月10日

（試問B）

課題論文

教育学部

作成時間
10:00～11:00
(60分)

注意事項

1. 開始の合図があるまで、この問題冊子、答案紙を開いてはいけない。
2. この問題冊子は3ページである。下書き用紙は別に配付する。下書き用紙は8ページである。なお、ページの脱落、印刷不鮮明の箇所などがあった場合には申し出ること。
3. 解答は、かららず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけない。
4. 答案紙は1枚である。答案紙の受験記号番号欄には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入すること。
5. 解答は、必ず答案紙の指定された箇所に記入すること。
6. 答案紙を持ち帰ってはいけない。
7. 終了後は、この問題冊子と下書き用紙を持ち帰ること。

問題

日本では、外国人（外国籍）の親が子どもを公立小中学校などへ就学させることを希望する場合、無償で受け入れ、日本人（日本国籍）の子どもと同一の教育を受ける機会を保障しています。

しかし、小中学校に通う年齢であるにもかかわらず、就学していない可能性がある外国人の子どもが全国に 7000 人以上あるいは 8000 人以上いるとされています。また、就学した子どもにも学業不振など様々な困難が生じる可能性があるといわれています。

こうした日本で暮らす外国人の子どもへの教育に関する課題を解決するためには、どのような取り組みが必要でしょうか。また、それはなぜでしょうか。あなたの考えを整理して論じなさい。

令和 6 年度 AO 入試問題集 (法学部)

公表期限：2027 年 3 月末

東北大学アドミッション機構

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験①問題

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
文 学 部	10:30~11:30	
教 育 学 部		11 ページ
法 学 部	(60 分)	

注意事項

1. 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
2. この「問題冊子」は 11 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
3. 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
4. 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
5. 「解答用紙」の受験記号番号欄（1枚につき1か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
6. 解答は、必ず「解答用紙」の指定された箇所に記入してください。
7. 特に指示がある場合以外は、日本語で記入してください。
8. 解答に字数の指定がある場合、句読点、数字、アルファベット、記号も 1 字として数えてください。
9. 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

——このページは白紙——

——このページは白紙——

1 次の英文を読み、以下の問い合わせに答えなさい。

As an increasing number of elementary, middle and high school students in the U.S. have begun to identify as transgender, school leaders have struggled to figure out how to respond, and how – and whether – to communicate about their actions to parents.

In Maryland, for instance, three sets of parents filed a federal lawsuit in 2020 that challenged school guidelines allowing students to express their gender identities at school. In some situations teachers and other school staff are asked not to notify parents ⁽¹⁾ they are doing so.

The federal trial court ruling, which has been appealed, determined that parents did not have a fundamental right to be informed promptly if their children chose to identify as another gender while at school.

The judge tried to balance both parents' rights under the due process clause of the Constitution and states' rights to regulate public education, even if they conflict with parental wishes.

⁽²⁾ The judge found that while school board officials intended to ultimately inform parents, if educators had concerns about a child's safety they would hold off on doing so.

The board's rules, the judge wrote, "keep a student's gender identity confidential ... out of concern for the student's well-being." The rules also call for a "comprehensive gender support plan that anticipates and encourages eventual familial involvement wherever possible."

In short, parents have a general right to know about their children's activity in school. (3) to privacy and personal safety.

The Maryland case is by no means the only case in which school officials have been caught between students' right to privacy and parents' right to know. As researchers who specialize in education law, we have analyzed similar cases in Iowa, Massachusetts, Wisconsin and Virginia.

Regardless of how the cases from Maryland and elsewhere play out, this issue is likely to continue to generate additional controversy and *litigation.

(4) Disagreements between parents and schools over education are not new. In 1925, in *Pierce v. Society of Sisters*, a dispute from Oregon, the Supreme Court upheld the rights of parents to send their children to schools run outside the public education system.

The justices famously wrote: “The child is not the mere creature of the state; those who nurture him and direct his destiny have the right, coupled with the high duty, to recognize and prepare him for additional obligations.” This signaled clearly that parents have rights over how their children are raised and educated.

But the U.S. Supreme Court has not yet decided clearly (5). As a result, an *appellate court in New Jersey observed that courts have held that “in certain circumstances the parental right to control the upbringing of a child must give way to a school’s ability to control curriculum and the school environment.”

Courts have even decided that there may be times when school or other public officials have legitimate interests in intervening where parents would typically have free rein, to assist or protect children. For example, educators might choose to keep information about students’ gender identity from parents if school staff members have reason to believe the students would be kicked out of their houses, physically abused, or forced to participate in abusive counseling programs, such as conversion therapy.

At the same time, school officials must ensure protection of students’ rights. In particular, many states have laws requiring school board officials to protect their students from discrimination and violations of privacy.

(中略)

School staff members have legal obligations to protect students’ privacy. According to the 3rd U.S. Circuit Court of Appeals, “It is difficult to imagine a more private matter than one’s sexuality and a less likely probability that the government would have a legitimate interest in disclosure of sexual identity.”

Even so, schools often want parents to be involved in their children’s education and the wider school community. This regularly puts educators in the sensitive position of having to protect student privacy while respecting parental rights to raise their children in accordance with their values.

(6) () (ア) () (イ) how (ウ) () balance parental rights to direct the lives of their children and the role of educators in safeguarding the privacy rights of students – and whether the Supreme Court can, or will, ever set clearer rules in this important topic.

(Charles J. Russo, Maggie Paino, and Suzanne Eckes, “Rights of transgender students and their parents are a challenge for schools, courts,” *The Conversation*, Feb 6, 2023. より一部改変)

*litigation 訴訟 *appellate 上訴の

問 1 下線部(1)は具体的に何を意味しているのか、本文に即して説明しなさい。

問 2 下線部(2)について、doing so が指すことを明らかにして、日本語に訳しなさい。

問 3 空欄(3)に入る最も適切なものを以下のア～エの中より 1 つ選び、記号で答えなさい。

ア Therefore, parental rights must not be limited by students' rights

イ Therefore, students' rights must not be limited by parental rights

ウ However, parental rights can be limited by students' rights

エ However, students' rights can be limited by parental rights

問 4 筆者は下線部(4)のように主張する根拠としてどのような具体例をあげているか。本文に即して 40 字程度で説明しなさい。

問5 空欄 (5) に入る最も適切なものを以下のア～エの中より 1 つ選び、記号で答えなさい。

ア where the duties of students end and the duties of their teachers begin

イ where the rights of students end and the rights of their teachers begin

ウ where the duties of parents end and the duties of their children begin

エ where the rights of parents end and the rights of their children begin

問6 下線部(6)の ()内に、文脈に合うように以下の①～⑦の語を最も適切な順序に並び替えて入れるとき、(ア)(イ)(ウ)に入る語の番号を答えなさい。ただし文頭の語も小文字になっている。同じ選択肢を複数回使用しないこと。

() (ア) () () (イ) how (ウ) ()

① it ② to ③ seen ④ will ⑤ be ⑥ remains ⑦ courts

2 次の英文を読み、以下の問い合わせに答えなさい。

*Fertility rates are falling across the globe – even in places, such as sub-Saharan Africa, where they remain high. This is good for women, families, societies and the environment. (1) So why do we keep hearing that the world needs babies, with *angst in the media about maternity wards closing in Italy and ghost cities in China?

The short-range answer is that, even though this slowdown was predicted as part of the now 250-year-old demographic transition – whose signature is the tumbling of both fertility and mortality rates – occasional happenings, such as the publication of US census data or China's decision to relax its two-child policy, force it back into our consciousness, arousing fears about family lines rubbed out and diminishing superpowers being uninvited from the top table.

The longer range answer is that (2) our notion of a healthy, vibrant society is still rooted in the past. The inevitable byproduct of the demographic transition is that populations age, in a chronological sense, but life expectancy, and particularly healthy life expectancy, have increased dramatically over the last half-century, and the societal definition of “old” has not kept up (though artistic experiments such as casting 82-year-old Sir Ian McKellen as Hamlet might help to challenge age-related stereotypes).

In the 19th century, a country needed youth to operate its factories, consume what they *churned out and constitute a fighting force in times of war. That became less true over the 20th century, and in the 21st it bears very little relation to reality. More and more of the jobs that require stamina and strength – including fighting – are done by machines, while a nation’s products are consumed globally.

Gross domestic product (GDP) might influence a nation’s geopolitical standing and a large GDP fills government *coffers, but (a). Twenty-somethings and 50-somethings have different kinds of intelligence, says gerontologist Sarah Harper of the University of Oxford, but both play a part in entrepreneurship. And if you care about human wellbeing (3) you () (ア) () (イ) () (ウ) () ().

Demographer Ron Lee of the University of California, Berkeley, and others have shown that GDP per person, and hence living standards, are highest when fertility falls just below replacement level (around 2.1 births per woman) – to 1.6 or even less.

When fertility is either much higher or much lower than that, quality of life falls off again. Lee would be worried if he was in South Korea at 0.8 births per woman, or China at an estimated 1.3, he says, but England and Wales (1.6), the European Union (1.5) and the US (1.6) are all hovering around (4) that sweet spot.

That doesn't mean we don't have to adapt to the new reality. We do, in part because the way many countries distribute resources is also rooted in the 19th century and is unsustainable. (b), for example. Although creativity doesn't fall off with age, skills change, and we need to replenish those that are lost from the workforce. And when elderly people do finally stop being productive, we need to find new ways and new workers to care for them.

(c), smoothing the demographic transition for richer countries while redistributing capital to poorer ones where fertility rates remain relatively high. The evidence is overwhelming that, in general, immigration is good for societies – economically, but also socially. Closing doors to it is, in this sense, self-destructive.

So there's work to do, but in a world in the grip of a climate crisis, to which we've added 7 of the nearly 8 billion humans in just a couple of centuries – and to which we will almost certainly add another 3 billion before our numbers start falling again – it's absurd to say that what's lacking is babies.

(5) In fact, trying to force people to have either more or fewer babies turns out to be rather pointless. Despite China's decades-long one-child policy, its fertility decline hasn't been dramatically steeper than elsewhere in East Asia. France's *valiant efforts to encourage large families with financial incentives haven't made much difference either, compared with the rest of Europe. As child mortality drops, and women's health and education improve, fertility falls. Parents choose to invest more time, money and love in fewer children. You can sway their decisions slightly by making life harder or easier for families – through childcare provision, say, or parental leave allowances – but the demographic transition is unstoppable.

(Laura Spinney, "Why declining birth rates are good news for life on Earth," *The Guardian*, Jul 8, 2021. より一部
改変) (Copyright Guardian News & Media Ltd 2024)

*fertility rates 出生率

*angst 不安全感

*churn out 量産する

*coffer 財源, 金庫

*valiant 勇ましい

問1 下線部(1)の質問に対しての答えの1つとして筆者があげているものはどれか、次のア～エより最も適切なものを1つ選び、記号で答えなさい。

- ア イタリアの産科病棟の閉鎖や中国のゴーストシティなどの状況は他国のこととして冷静にとらえることができるから。
- イ 人口減は、人口動態の変化の一環としてはまったく予測されていなかつたから。
- ウ 人口減の特徴は出生率と死亡率の両方の低下であるから。
- エ 家系が絶えてしまうとか、超大国でなくなってしまうというような不安を感じるから。

問2 下線部(2)で述べられている “our notion of a healthy, vibrant society” とは具体的にどのような考え方か、本文に即して説明しなさい。

問3 空欄(a)～(c)に入る最も適切なものをそれぞれ次のア～エより選び記号で答えなさい。ただし文頭の語はすべて小文字にしてある。同じ選択肢を複数回使用しないこと。

- ア immigration – which tends to bring in young adults – is a critical component of that adaptation
- イ there's no evidence that young workers are any more productive than older ones today
- ウ more people need to work longer
- エ more and more consumers will get interested in local production for local consumption

問4 下線部(3)の()内に、文脈に合うように以下の①～⑧の語句を最も適切な順序に並び替えて入れるとき、(ア)(イ)(ウ)に入る語句の番号を答えなさい。同じ選択肢を複数回使用しないこと。

you()(ア)()(イ)()(ウ)()()

- ① more attention ② should ③ GDP ④ per country ⑤ per person
- ⑥ to ⑦ pay ⑧ than

問5 下線部(4)は、具体的に何を意味しているか、本文に即して説明しなさい。

問6 筆者は下線部(5)のように主張する根拠としてどのような具体例をあげているか。本文に即して2点、説明しなさい。

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験②問題

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
法 学 部	13:00~14:30 (90 分)	9 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は、9 ページあります。「問題冊子」に綴じ込まれている白紙は、メモ用紙として自由に使用して構いません。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」（全 2 枚）、「メモ用紙」（全 1 枚）を配付します。また、英英辞書を貸与します。貸与される英英辞書は、試験時間中自由に使用することができます。ただし、辞書に書き込みをしたり、折り目を付けたりしないでください。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄と辞書番号欄（用紙 1 枚につきそれぞれ 1 か所）には、忘れずに、受験票と同じ受験記号番号と、貸与された辞書の番号を、はっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。「問題冊子」、「メモ用紙」は持ち帰ってください。

—このページは白紙—

—このページは白紙—

I. 次の論評記事を読んで、以下の問い合わせに答えなさい。

In a bid to play catch up with technology companies and younger generations of consumers, central banks are finally starting to take digital currencies seriously. Countries such as Sweden, China, and India have established pilot digital currencies – respectively, the e-krona, e-yuan and e-rupee – via their central banks. In the finance sector, these are known as central bank digital currencies (CBDCs).

The purpose, scale and status of such efforts vary considerably. In Sweden, the goal is to investigate the potential transition from banknotes to a digital currency, and the e-krona remains in the starting blocks. In China, the “digital renminbi” started to roll out in 2020, and its goal is to allow the state to better control the retail economy. India launched an e-rupee pilot in 2022 and its purpose is to facilitate a broad range of transactions. Meanwhile, the United States is exploring the potential repercussions of establishing its own digital currency.

Along the same lines, the European Union is currently toying with the idea of launching its own digital currency, the e-euro. As the European Central Bank (ECB) explains, it would provide a digital alternative to existing payment methods with the goal of increasing the security and stability of the EU’s monetary system. The e-euro would be held in digital wallets, with transactions facilitated by the use of blockchain.

A crucial difference between the e-euro (a CBDC) and cryptocurrencies is that its overall quantity – the number in circulation – would not be capped. Because bitcoins and other cryptocurrencies aren’t issued by central banks, the number in circulation is limited by the fact that creating new ones requires “mining”, an energy-intensive process that involves solving extremely complicated math problems. Not the case with the e-euro, as it would be regulated by the European Central Bank and be linked directly to the euro itself – there will be no exchange rate, it would simply be the euro in another format.

While there is a superficial similarity between the e-euro and “stablecoins” – cryptocurrencies whose value is pegged to a major currency – the e-euro would be issued and controlled from a public entity. This will ensure stability in valuations and regulation.

The case in favour

The 1 million euro question is why is the ECB would consider a digital currency. While we all have a centuries-long familiarity with physical currencies, digital ones have some advantages:

- *Less resource intensive.* ^①A central bank digital currency doesn’t require printing, validation, circulation, monitoring and replacement, and thus would have a considerably lower ecological footprint. That it will be issued rather than mined adds to its energy efficiency. The International Monetary Fund estimates that a CBDC’s payment system for clearance and settlement could use hundreds of thousand of times less energy than physical currencies and cryptocurrencies while maintaining low transaction costs.
- *Increased banking access.* Because a digital euro would be directly managed by central banks, it would eliminate the need for intermediaries such as private financial institutions. It thus has

the potential to reduce economic exclusion, such as in the cases of “the unbanked” – low-income people without bank accounts. The ECB would create and sustain the required infrastructure, making the e-euro available to all. For example, while private institutions would require a minimum credibility score to open an account, governments could facilitate access to money by opening digital wallets as part of a social policy agenda.

- *Economic *sovereignty.* It can protect the euro from competing CBDC and other cryptocurrencies and thus defend Europe’s economic sovereignty. It will also allow governments to monitor transactions and so reduce tax avoidance and money laundering.

Where a digital currency leaves central and commercial banks

Given the potential advantages of central bank digital currencies, what is holding countries back? Everything depends on how CBDCs are be designed and implemented, and some challenges that might overshadow any potential.

- *Pushing back against ^②private digital currencies.* Imagine a world where private digital currencies like bitcoin or Facebook’s libra become the means for a substantial share of world’s financial transactions. In this world, the value of the means of exchange would be entirely determined by supply and demand or by the private venture – for example, Facebook itself. The introduction of CBDCs would enable central banks to determine the value of money itself and thus help ensure their country’s monetary sovereignty. People will still be able to choose between national currencies or those supported by private firms, but with the e-euro, Europe will at least be on an equal footing.
- *Balancing security and privacy.* The basic principle of tangible money is anonymity. In its cash format, money can be exchanged for goods or services without necessarily disclosing one’s identity with every transaction. A fully secure digital currency would require that all transaction information be reported to the authorities, while a fully private one disclose no information. The former would give too much power to central authorities, while the latter would encourage tax avoidance and other **nefarious* behaviour. The traceability of blockchain can assist in tracking back the full financial history, but should the identity of the actor be public information? The e-euro is likely to operate in a ^③semi-anonymous format to preserve a balance between security and privacy.
- *More stability, less speculation.* The initial idea of digital currencies was that they would become decentralized means of exchange, governed by the forces of supply and demand. However, they shortly became **speculative assets*, subject to vertiginous spikes and brutal crashes. Instead, a major currency should reflect the conditions of the real economy rather than speculation about its future state.

So is the e-euro something that we need or want? This depends on how it will be designed and regulated. For this particular venture, given the complexity of EU regulation, the devil is in the details.

(Iordanis Kalaitzoglou, “Meet the EU’s answer to crypto: the e-euro”, *The Conversation*. May 31, 2023 より一部改変)

*sovereignty : 主権

*nefarious : (especially of activities) morally bad

*speculative : 投機的

問 1 筆者によれば、デジタル通貨の導入を検討する理由は、国などによって異なる。以下の選択肢のうち、この論評記事において欧州中央銀行（ECB）がデジタル通貨を検討したとされている主たる理由を 1 つ選び、記号で答えなさい。

- ⑦ 多様な取引を可能とすること
- ① 通貨の価値を需給関係により決定させること
- ⑦ 個人などによる取引を監視対象とすること
- ④ 物理的な通貨からの離脱を検証すること
- ④ 通貨システムの安全性と安定性を向上させること

問 2 下線部①を和訳しなさい。

問 3 中央銀行が中央銀行デジタル通貨（CBDC）の発行により下線部②private digital currencies に対抗する必要があるのはなぜか。筆者の見解（あるいは主張）を日本語 120 字以内でまとめなさい。なお、句読点、数字、アルファベット、記号も 1 字として数えること。

問 4 e-euro が下線部③にある semi-anonymous format をとる可能性があるのはなぜか。

筆者の見解（あるいは主張）を日本語 120 字以内でまとめなさい。なお、句読点、数字、アルファベット、記号も 1 字として数えること。

—このページは白紙—

II. Read the following article and answer the questions in English.

From April 2022, people age 18 and 19 in Japan will legally be classed as adults and will be given more freedom in making life choices without parental consent — albeit not without criminal responsibilities, due to planned amendments to the Civil Code and Juvenile Law.

What will be changed in this legislation and how will those changes affect the late teens? Why will 18-year-olds and 19-year-olds be viewed as adults? How harsh will punishment for transgressions by such young adults be?

Here is a look at the planned amendments in more detail.

What kind of changes affecting people under 20 will come into force in April?

The government plans to lower the legal age of adulthood to 18. This will involve revisions to Japan's Civil Code and Juvenile Law. The revisions will take effect on April 1.

With the changes, 18-year-olds and 19-year-olds, who until now have been legally viewed as minors, will be able to enter into a contract without parental consent. Such contracts include purchasing a cellphone, taking out a car loan, signing an apartment lease and signing up for credit cards.

Under existing laws, males age 18 and females age 16 have been allowed to marry with their guardians' consent, but the provision for marriage by minors will be removed in April. After that, any man and woman age 18 or older can marry without a guardian's consent.

The revisions will also lower the age threshold to legally change one's gender from 20 to 18.

Young adults age 18 and 19 will be able to acquire a passport for a maximum period of 10 years, whereas children under the age of 18 will receive a passport valid for 5 years.

However, the legal age for buying alcohol and cigarettes as well as for gambling will remain at 20. In Japan, most forms of gambling are banned in principle under the Criminal Code. There are several public gambling options, including betting on horse racing and certain motorsports, which are legally permissible.

How will the amendment to the Juvenile Law impact young people under 20?

The amendment to the Juvenile Law, meanwhile, will result in stricter punishments for young offenders.

Starting from April, those age 18 and 19 will be regarded as specified juveniles under criminal law. As such, they may be sent from family courts, which normally handle cases of juvenile delinquents, to prosecutors for criminal trials. Under the current regulations, only cases involving children age 16 and over whose intentional acts have resulted in someone's death have been subjected to criminal trials.

Following the revisions, recommendations for custodial sentencing for a given offense will be made separately for children age 17 and younger and for the young people who will soon be considered adults. Those age 17 and under will only be given prison sentences of up to 15 years while such sentences for defendants age 18 or over could be extended up to 30 years.

Under the current statute, homicide is the only criminal charge for which minors are subject to prosecution. The revised law will expand that to include robbery, rape, arson and other offenses punishable by imprisonment of at least one year, with the possibility of facing the death penalty for serious crimes.

The government will also redefine the age range regarding the ban on disclosure by media outlets of photographs of offenders and their real names. The disclosure of such information would be permitted once an offender is formally indicted, but the ban will still apply to those under the age of 18.

Why has the government decided to lower the age of adulthood?

The constitutional referendum law, revised in 2014, stipulated that the age threshold to vote in referendums would be set at 18 in 2018.

Japan lowered the minimum voting age in the nation's noncompulsory electoral system from 20 to 18 in June 2016. The move was aimed at raising political awareness among young people and increasing voter turnout.

That move prompted deliberations on lowering the minimum voting age, as well as on amendments to the Civil Code that would lower the age of adulthood to 18 from the current 20.

When parliament passed the amendments in 2018, it was the first such change in 142 years.

The move to reassess the age of adulthood came amid calls for a tougher Juvenile Law, which were sparked by a string of brutal crimes by underage perpetrators. Lawmakers were split over whether to partly exclude those age 18 and 19 from correctional programs with mandatory enrollment under the existing law, involvement in which might increase recidivism. Nevertheless, the debates culminated in May with the parliament passing the age revision.

(Adapted from "Japan is set to lower the legal age of adulthood. How will young people be affected?" by Magdalena Osumi, *The Japan Times*, March 21, 2022)

Question 1: Explain in your own words the legal revisions that accompanied the lowering of the legal age of adulthood to 18 years. What new rights have 18 and 19 years olds gained? What new punishments await them if they commit a crime? Your answer should be approximately **100 words long in total.**

Question 2: The lowering of the legal age has given both new rights and new punishments to 18 and 19 years olds. Do you think that, on balance, the revisions are good for young people or not? Explain your view in **60 to 80 words.**

令和 6 年度 AO 入試問題集 (理学部)

公表期限：2027 年 3 月末

東北大学アドミッション機構

東北大学 理学部 数学系 AO入試 II期

数学問題

解答提出時刻： 12時30分

注意

1. 解答用紙は4枚ある。
2. すべての解答用紙の上部に、氏名、受験番号を記入し、問題番号の書かれた解答用紙に対応する問題の解答をすること。解答用紙は裏面を使用しても差し支えない。1問の解答を1枚の解答用紙に書ききれない場合は、予備の解答用紙を配布するので、試験監督に申し出ること。
3. 白紙の場合でも、各問の解答用紙を提出すること。
4. 計算用紙が必要な場合は、試験監督に申し出ること。
5. 問題について質問のあるときは、試験監督に申し出ること。
6. 電卓などは使用しないこと。
7. 携帯電話、スマートフォン、タブレット等の電子通信機器は電源を切り、かばんに入れること。

【1】 n を3以上の整数とする。1から n までの数字が1つずつ書かれた n 枚のカードが袋に入っている。袋から1枚のカードを取り出す試行を4回行う。ただし、取り出すたびにカードは袋へ戻す。整数 $k = 2, 3, 4$ に対して、 k 回目に取り出したカードの数字がそれ以前に取り出したどのカードの数字よりも大きくなる事象を A_k^n とおく。つまり、 k 回目に取り出したカードの数字を X_k とおくとき、 $1 \leq \ell \leq k-1$ を満たすどのような ℓ に対しても $X_k > X_\ell$ となる事象を A_k^n とする。このとき、以下の問いに答えよ。

- (1) 整数 i, j が $2 \leq i < j \leq n$ を満たすとき、事象 $X_2 = i$ かつ事象 $X_4 = j$ かつ $A_2^n \cap A_4^n$ が起こる場合の数を i, j を用いて表せ。
- (2) 確率 $P(A_2^n \cap A_4^n)$ を求めよ。
- (3) 極限 $\lim_{n \rightarrow \infty} P(A_2^n \cap A_4^n)$ を求めよ。

2 座標平面上の点 $(a, 0)$ と点 $(0, b)$ が $(a+1)b = 2$, $1 \leq a \leq 2$ を満たしながら動くとき, 点 $(a, 0)$ と点 $(0, b)$ を結ぶ線分の通過する範囲を求め, 座標平面に図示せよ.

〔3〕すべての実数 x において、2つの関数 $u(x)$, $f(x)$ は微分可能であり、その導関数 $u'(x)$, $f'(x)$ も微分可能であり、3つの関数 $h(x)$, $u''(x)$, $f''(x)$ は連続であるとする。さらに、これらの関数は以下を満たすとする。

$$u''(x) + h(x)u(x) = 0 \quad (0 \leq x \leq 1)$$

$$0 < f(x) < u(x) \quad (0 < x < 1)$$

$$u(0) = u(1) = 0$$

$$f(0) = f(1) = 0$$

$$h(x) > 0 \quad (0 \leq x \leq 1)$$

$-1 < t < 1$ を満たす実数 t に対して、3つの関数 $N(t)$, $D(t)$, $R(t)$ をそれぞれ次で定める。

$$N(t) = \int_0^1 (u'(x) + tf'(x))^2 dx$$

$$D(t) = \int_0^1 h(x)(u(x) + tf(x))^2 dx$$

$$R(t) = \frac{N(t)}{D(t)}$$

このとき、以下の問いに答えよ。

- (1) $R(0)$ の値を求めよ。
- (2) $R'(0)$ の値を求めよ。
- (3) $f(x) = xu(x)$ のとき、 $R''(0) > 0$ であることを証明せよ。

4 等式 $x^2 + y^2 + z^2 - 3xyz = 0$ を満たす正の整数の組 (x, y, z) は無限個あることを証明せよ。

東北大学理学部物理系 AO 入試 II 期

物理 課題 1

試験時間 9:15~10:15

注意

- ・問題用紙 4 枚 (表紙を含め 5 枚), 解答用紙 2 枚, 草案紙 1 枚.
- ・全ての解答用紙について, 上部の欄に受験番号および氏名を記入すること.
- ・解答用紙は両面を使い, 用紙が足りなくなったら挙手して追加を申し出ること.
- ・問題用紙, 解答用紙, 草案紙は全て回収するので持ち帰らないこと.

課題 1

解答に際しては、結果だけでなく考え方や計算の過程も記すこと。

問 1 図 1 のように点 C を中心とする半径 R の半円形に内面をくり抜いた台 (質量 M) を水平な床の上に置き、固定具を使って台が床の上で動かないように固定した。台内面の左端に、大きさが無視できる質量 m ($m < M$) の小球を置いて静かに放すと、小球は運動を始め、台内面の右端まで到達した。小球と台内面の間の摩擦は無視でき、小球と台は紙面に平行な面内でのみ運動できるものとする。重力加速度の大きさを g として、以下の問いに答えよ。

- (1) 図 1 のように、台内面の最下点 P から角度 θ の位置にある点 Q とする。点 Q での小球の速さ v_Q を、 m, g, R, θ の中から必要なものを用いて表せ。
- (2) 点 Q において小球が台から受ける垂直抗力の大きさ N を、 m, g, θ を用いて表せ。

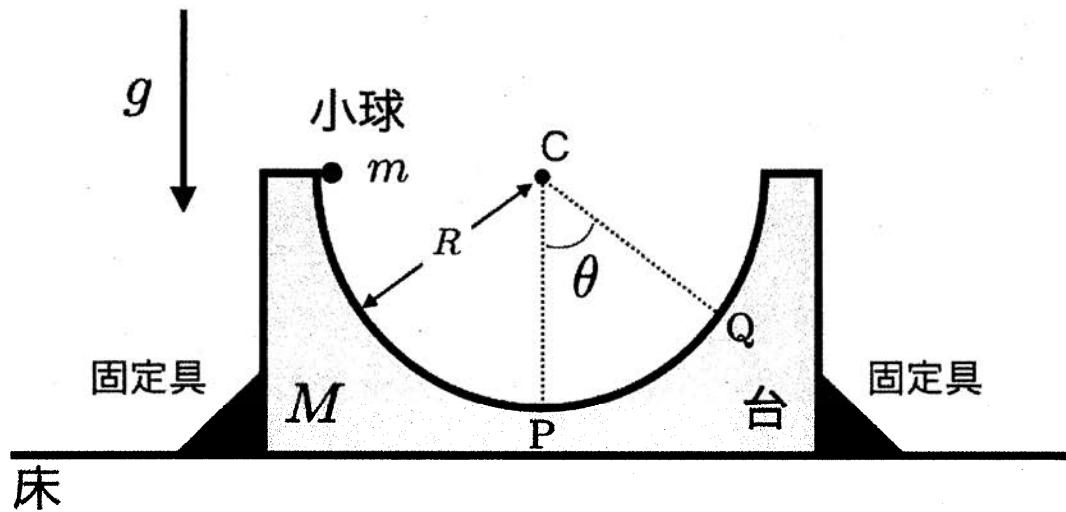


図 1

(次ページにつづく)

図 2 のように、台から固定具を外し、一方の端が壁に固定された糸のもう一方の端を、糸がゆるんだ状態で台の右側に固定した。糸は伸び縮みせず、糸の重さも無視できる。また、台と床の間の摩擦は無視でき、台は床から浮くことはない。台内面の左端に小球を置き、静かに放すと小球は運動を始め、最下点 P に到達した。

- (3) 小球が最下点 P に達したとき、糸はゆるんだままの状態であり、小球は床に対して水平方向右向きに速さ v_1 、台は水平方向左向きに速さ V_1 で運動していた。 V_1 を、 m, M, v_1 を用いて表せ。
- (4) 小球の速さ v_1 を、 m, M, g, R を用いて表せ。

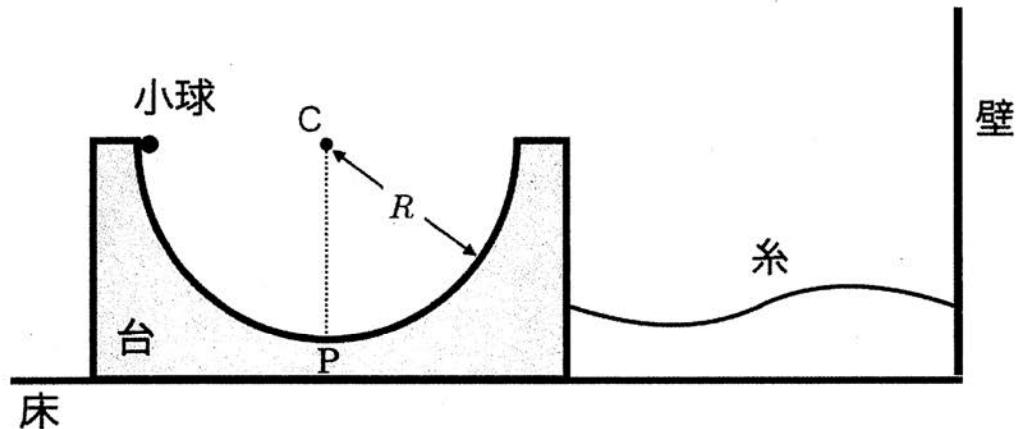


図 2

(次ページにつづく)

次に、小球を置く前に台の位置を調節したところ、台内面の左端から小球を静かに放した後、図 3 のように、小球が最下点 P に到達したときにちょうど糸が張った。すると、糸が張ることによって台が床から浮くことなく、台に対して撃力が水平方向に加わった。撃力が加わった瞬間に、小球の速さは問 (4) で求めた v_1 のまま変化せず、台と小球全体のエネルギーが失われることもないとする。撃力が加わった後、小球は右方向に向かって台内面に沿って登り、図 4 のように台が壁に衝突する前に、最下点 P から高さ h_{\max} となる最高点に達した。そのときの台の速さを V_2 とする。

- (5) 台にはたらく撃力による力積の大きさ I を、 M, V_1 を用いて表せ。
- (6) 小球が最高点に達したときの台の速さ V_2 を、 m, M, v_1 を用いて表せ。
- (7) 小球が最高点に達したときの高さ h_{\max} を、 m, M, g, R の中から必要なものを用いて表せ。

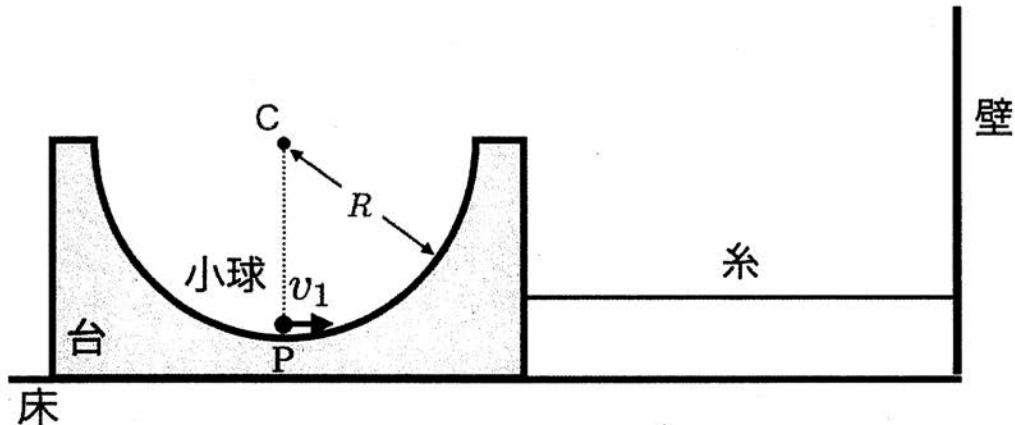


図 3

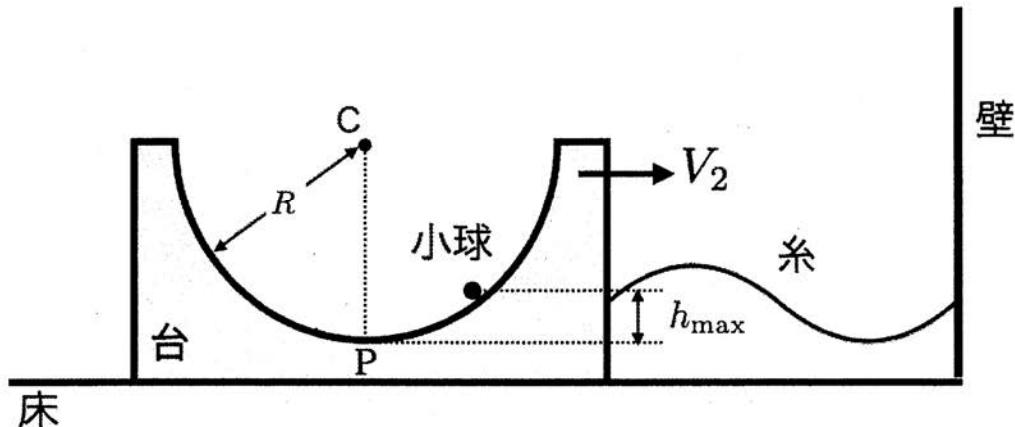


図 4

問 2 図 5 のように、水平に対して角度 θ をなす十分に長い斜面がある。斜面上の点 O を原点として、斜面に沿って上向きに x 軸、斜面に対して垂直に y 軸をとる。大きさが無視できる質量 m の小球を、時刻 $t = 0$ に、点 O から初速度 $\vec{v}_0 = (v_{0x}, v_{0y})$ で発射した。小球は図 5 に示すような軌跡を描いて、斜面との衝突をくり返しながら運動した。小球と斜面の衝突は反発係数 e の非弾性衝突であるとする。重力加速度の大きさを g として、以下の問いに答えよ。

- (1) 小球が発射されてから 1 回目に斜面に衝突するまでの運動について考える。
 - (a) 小球の加速度 $\vec{a} = (a_x, a_y)$ を、 m, g, θ の中から必要なものを用いて表せ。
 - (b) 時刻 t における小球の速度 $\vec{v}(t) = (v_x(t), v_y(t))$ と位置 $\vec{r}(t) = (x(t), y(t))$ を、それぞれ $m, g, \theta, v_{0x}, v_{0y}, t$ の中から必要なものを用いて表せ。
 - (c) 小球が 1 回目に斜面に衝突する時刻 t_1 およびそのときの x 座標 x_1 を、それぞれ $m, g, \theta, v_{0x}, v_{0y}$ の中から必要なものを用いて表せ。
- (2) 小球が n 回目 ($n = 1, 2, 3, \dots$) に斜面に衝突してはね返った直後の速度を、 $\vec{v}_n = (v_{nx}, v_{ny})$ とする。
 - (a) $\vec{v}_1 = (v_{1x}, v_{1y})$ を、 $m, g, \theta, v_{0x}, v_{0y}, e$ の中から必要なものを用いて表せ。
 - (b) \vec{v}_{n+1} と \vec{v}_n のあいだに成り立つ関係式（漸化式）を考えることによって、 $\vec{v}_n = (v_{nx}, v_{ny})$ を、 $m, g, \theta, v_{0x}, v_{0y}, e, n$ の中から必要なものを用いて表せ。
- (3) $\theta = 30^\circ$ かつ、 \vec{v}_0 が斜面となす角度も 30° であったとする。図 5 のように、小球が斜面と衝突する点すべての中で、2 回目に衝突した点が最も高い位置となるために、反発係数 e が満たすべき条件を求めよ。

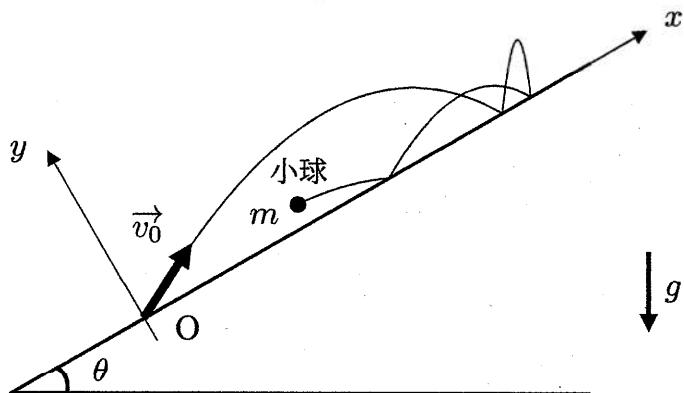


図 5

東北大学理学部物理系 AO 入試 II 期

物理 課題 2

試験時間 10:40～11:40

注意

- ・問題用紙 4 枚（表紙を含め 5 枚），解答用紙 2 枚，草案紙 1 枚。
- ・全ての解答用紙について，上部の欄に受験番号および氏名を記入すること。
- ・解答用紙は両面を使い，用紙が足りなくなったら挙手して追加を申し出ること。
- ・問題用紙，解答用紙，草案紙は全て回収するので持ち帰らないこと。

課題 2

解答に際しては、結果だけでなく考え方や計算の過程も記すこと。

問 1 クーロンの法則の比例定数を k として、以下の問いに答えよ。

(1) 静電気力に関する以下の文章の空欄 (ア) ~ (オ) に適当な語句や数式を入れて文章を完成させよ。

静電気力に関するクーロンの法則を理解するうえで、電気力線の概念は有用である。電気力線は (ア) の電荷から出て、(イ) の電荷に入り、途中で分かれたり交わったりすることはない。(ア) の電荷のみが存在する場合は、電気力線は無限遠に向かう。電気力線は電場と (ウ) 向きをもつ。電場の大きさ E は、電場に (エ) な面の単位面積を通過する電気力線の本数で表される。(ア) の電荷の集まりから出る電気力線の本数 N は、電荷の総量を q とするとき、 $N = (オ)$ である。電気力線と電場の概念は、点電荷の場合だけでなく、広がりのある電荷分布についても一般的に成り立つ。

(2) 図 1 のように、電気量 q ($q > 0$) の電荷を帯びた半径 a の導体球がある。問 (1) の問題文中の下線部の考え方を用いて、導体球の中心から距離 r ($r > a$) 離れた位置における電場の大きさ E を、 q, a, r, k の中から必要なものを用いて表せ。

(3) 図 2 のように、問 (2) の導体球を導体球殻で覆う。導体球の中心と導体球殻の中心は一致している。導体球殻の内半径は b 、外半径は c とし、導体球殻全体の電気量は 0 とする。

(a) 導体球によって導体球殻の内側の表面に誘導される電荷の総量を、 q, a, b, c の中から必要なものを用いて表せ。

(b) 導体球の中心から距離 r 離れた位置における電場の大きさ E を、 q, a, b, c, r, k の中から必要なものを用いて表せ。ただし、解答は、 $r < a, a < r < b, b < r < c, c < r$ の 4 つの場合に分けて記すこと。

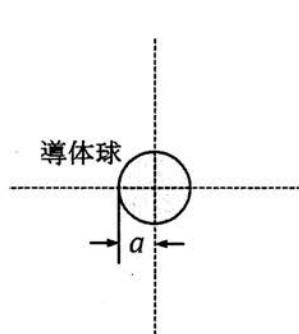


図 1

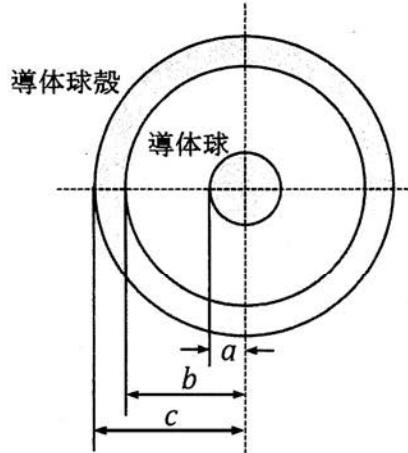


図 2

(次ページにつづく)

(4) 次に、図 2 の導体球と導体球殻に加えて、微小な電気量 ΔQ ($\Delta Q > 0$) の電荷を持ち、大きさと質量の無視できる荷電粒子が存在する場合について考える。以下の問いに答えよ。

(a) 図 2 の導体球の電気量は q のままでし、導体球殻には電気量 Q ($Q > 0$) の電荷を与えた。1 個の荷電粒子を導体球の中心から距離 r ($r > c$) 離れた位置に置き、外力を加えて導体球の中心に向かって距離 Δr だけゆっくり移動させた。このときの外力がする仕事 ΔW を、 Δr , ΔQ , q , Q , a , b , c , r , k の中から必要なものを用いて表せ。ただし、 Δr は微小量であり、粒子の移動にともなう外力の変化は無視してよい。また、 $r - \Delta r > c$ とする。

(b) 導体球と導体球殻に蓄えられる静電エネルギーを U とする。導体球から無限に遠く離れたところから多数の荷電粒子を、1 個ずつゆっくりと移動させて導体球殻に加え、導体球殻の電気量を Q から $2Q$ にした。このときの静電エネルギーの変化量 ΔU を、 q , Q , a , b , c , k の中から必要なものを用いて表せ。ただし、荷電粒子が無限に遠く離れたところにあるときの荷電粒子が持つ静電エネルギー、および、導体球殻に加えた荷電粒子による導体球殻の厚さの変化は無視してよい。

問 2 図 3 に示されている X 字型の物体 X は、長さ $\sqrt{2}\ell$ 、抵抗値 $2R$ の細くて軽い導体棒 2 本をそれぞれの中点において直角に接合して作られている。図 4 のように、2 本の滑らかなレールが水平に間隔 ℓ で平行に配置され、鉛直上向きに磁束密度 B の一様な磁場が加えられている。レールの右端には起電力 V の電池と可変抵抗が接続されており、レールの上には物体 X が、端点 D, E, G, H がレールと接するように置かれている。また、物体 X の中心 F には糸が結ばれており、この糸はレールと平行に伸びて滑車を通り、糸のもう一方の端には質量 m のおもりが取り付けられている。物体 X は取り外し可能なストッパーによって、最初はレールに固定されている。以下では、物体 X はレールから外れずに運動するものとし、糸の重さ、レールの電気抵抗は無視できるものとする。重力加速度の大きさを g として、以下の問いに答えよ。

- (1) 可変抵抗の抵抗値が R のとき、電池の供給電力（電池がする仕事の仕事率）を、 ℓ, R, V の中から必要なものを用いて表せ。ただし、DF, EF, FG, FH がそれぞれひとつの抵抗とみなせることに留意せよ。
- (2) 可変抵抗の抵抗値は R のまま、物体 X のストッパーを外したところ、おもりは静止したままであった。電池の起電力 V を、 B, g, ℓ, m, R を用いて表せ。
- (3) 次に、可変抵抗の抵抗値を $2R$ にしたところ、おもりは下降を始め、十分時間がたつと一定の速さ v で下降するようになった。
 - (a) 導体棒の一部 DF が単位時間に通過する領域の面積 S を、 g, ℓ, m, v の中から必要なものを用いて表せ。
 - (b) D と H のあいだに生じる誘導起電力の大きさを、 B, g, ℓ, m, v の中から必要なものを用いて表せ。
 - (c) 速さ v を、 B, g, ℓ, m, R を用いて表せ。

次に、物体 X から糸を外し、電池を起電力 V' の電池に取り替え、また可変抵抗の抵抗値を R とした。図 5 のようにレールに平行に x 軸をとり、 $x \leq 0$ の領域にのみ磁束密度 B の一様な磁場を、紙面に対して垂直に裏から表向きにかけた。そして、物体 X に外力を加えて一定の速さ v' で x 軸正の方向に動かした。

- (4) 物体 X の中心 F が $x = 0$ にあるとき、外力がする仕事の仕事率 W_1 、可変抵抗および物体 X の消費電力の和 W_2 、および電池の供給電力 W_3 を、それぞれ B, g, ℓ, m, R, v', V' の中から必要なものを用いて表せ。

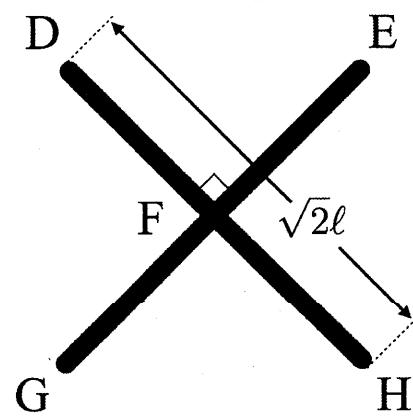


図 3

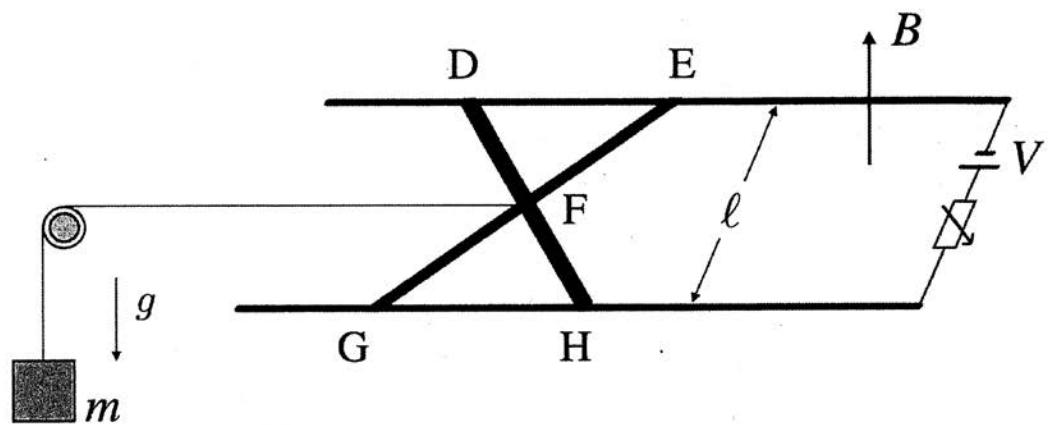


図 4

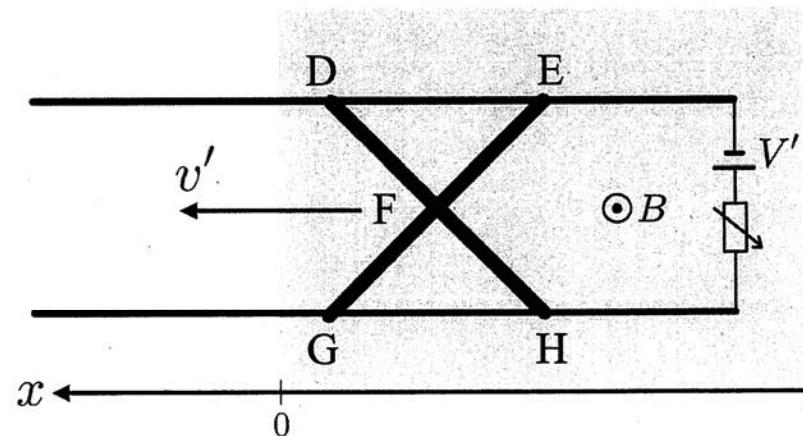


図 5

東北大学理学部物理系 AO 入試 II 期

物理 課題 3

試験時間 12:05～13:05

注意

- ・問題用紙 5 枚（表紙を含め 6 枚）、解答用紙 2 枚、草案紙 1 枚。
- ・全ての解答用紙について、上部の欄に受験番号および氏名を記入すること。
- ・解答用紙は両面を使い、用紙が足りなくなったら挙手して追加を申し出ること。
- ・問題用紙、解答用紙、草案紙は全て回収するので持ち帰らないこと。

課題 3

解答に際しては、結果だけでなく考え方や計算の過程も記すこと。

問 1 図 1 のように、单原子分子理想気体 A, B がシリンダー内に入れられ、固定された壁となめらかに動くピストンによって密閉されている。壁の左側の気体 A の物質量は n [mol]、右側の気体 B の物質量は 1 mol である。最初、ピストンは固定されており、気体 A は圧力 P_1 、体積 V_1 、温度 T_A 、気体 B は圧力 P_1 、体積 V_1 、温度 T_B の状態にある。この状態を状態 1 と呼ぶ。ここで $T_A > T_B$ である。

外気圧は P_1 とし、気体定数を R 、单原子分子理想気体の定積モル比熱を $\frac{3}{2}R$ とする。シリンダーとピストンは断熱材で覆われており、シリンダー内の気体と外部の熱のやりとりは無視できるものとする。また、壁も最初は断熱材で覆われており、壁を通しての熱のやりとりもないものとする。断熱材の体積、および、壁、シリンダー、ピストン、断熱材の熱容量は無視できるものとする。以下の問い合わせに答えよ。

(1) T_B を P_1, V_1, R を用いて表せ。

(2) T_A を n, T_B を用いて表せ。

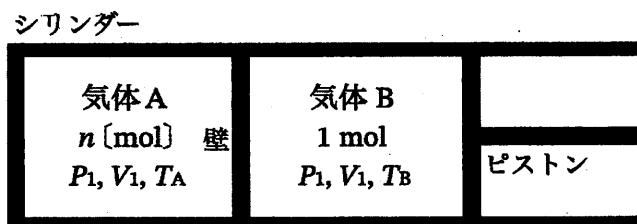


図 1

次に、ピストンの位置を固定したまま気体 A と B の間の壁の断熱材を取り払ったところ、気体 A から気体 B に熱が移動し、図 2 のように最終的にどちらの気体も同じ温度 T_2 になった。この状態を状態 2 と呼ぶ。

(3) 状態 2 における温度 T_2 、および、状態 1 から状態 2 への変化において気体 A から気体 B に移動した熱量 Q を、 R, V_1, n, T_B の中から必要なものを用いて表せ。

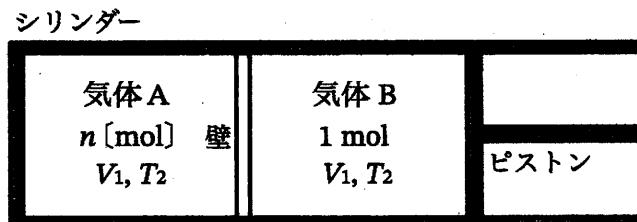


図 2

(次ページにつづく)

次に、気体 A と気体 B の熱平衡を保ったままピストンをゆっくり移動させ、気体 B の圧力が P_1 になるまで気体 B をゆっくり膨張させた。気体 B の圧力が P_1 になった状態を状態 3 と呼ぶ。

(4) 状態 2 から状態 3 への変化の途中にある気体 B の圧力、体積、温度をそれぞれ P, V, T とし、そこからわずかにピストンを移動させたとき、圧力、体積、温度がそれぞれ微小量 $\Delta P, \Delta V, \Delta T$ だけ変化したとする。また、この微小な変化の間に気体 A から気体 B に移動した熱量を ΔQ とする。このとき、微小な変化に対して、気体 A, B それぞれについて熱力学の第一法則を適用することにより、 $\frac{\Delta V}{\Delta T}$ を n, V, T を用いて表せ。ただし、微小量どうしの積は無視できるものとする。

(5) 状態 2 から状態 3 への変化の過程において気体 B の温度 T と体積 V の間に、 a と D を定数として $T = DV^a$ の関係が成り立つ。このとき、 $\frac{\Delta T}{T} = a \frac{\Delta V}{V}$ の関係が成り立つことを示し、問 (4) の結果と合わせて a の値を n を用いて表せ。ただし、温度と体積の微小な変化量 $\Delta T, \Delta V$ の大きさはもとの値に比べて十分小さい、すなわち、

$$\left| \frac{\Delta T}{T} \right| \ll 1, \quad \left| \frac{\Delta V}{V} \right| \ll 1$$

である。また、 z, b が実数かつ $|z| \ll 1$ のとき $(1+z)^b \approx 1 + bz$ と近似できることを用いてよい。

(6) 定積モル比熱 C の理想気体の断熱変化では

$$PV^\gamma = \text{一定}, \quad \gamma = \frac{C+R}{C}$$

となることが知られている。単原子分子理想気体の断熱変化では、 $C = \frac{3}{2}R$ となる。気体 B が状態 2 から状態 3 への変化の過程にある場合においても、定数 C の値を適切に選ぶと、この関係式が成り立つことを示し、そのときの C の値を、 n, R を用いて表せ。また、求めた C の値が単原子分子理想気体の定積モル比熱と比較して大きいか小さいかを、物理的な理由とともに述べよ。

問 2 真空中に図 3 に示すような干渉計があり、そこに波長 λ の単色光が入射する。 H_1, H_2 は光の一部を通して一部を反射する半透明鏡で、 M_1, M_2 は平面鏡である。 H_1 を通過したのち M_1 で反射され、 H_2 で反射される光の経路を経路 1、 H_1 で反射され、 M_2 で反射されたのち H_2 を透過する光の経路を経路 2 とする。経路 1、経路 2 を通った光は検出器の位置で干渉を起こす。 H_1 と M_1 の間、および M_2 と H_2 の間の光の経路は、 H_1 に入射する光の経路と平行である。また、 H_1 と M_2 の間、および M_1 と H_2 の間の光の経路は入射光に対して垂直である。その長さはどちらも ℓ である。 ℓ は可変である。以下の問いに答えよ。

まず経路 1 に、屈折率 n ($n > 1$)、厚さ d の板状の物質を、光の進行方向と垂直に挿入した。物質を挿入する前は、経路 1、経路 2 を通って検出器に入る光に光路差はなかった。

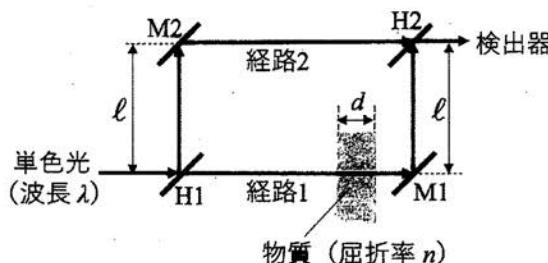


図 3

(1) 経路 1、経路 2 を通った光が検出器の位置において強め合う条件を、 d, n, λ 、および正の整数 m ($m = 1, 2, 3, \dots$) を用いて示せ。

次に、板状の物質を取り除いて、図 4 のように気体を入れた円柱状の容器を、その中心軸が経路 1 と経路 2 に垂直に交わるように置いた。はじめ気体は均一で密度は ρ_0 、屈折率は n_0 であった。容器の直径は s であり、容器の壁の厚さは無視できる。

図 5 のように、容器の上下の端に置いた音源から、疎密波である音波を入射すると定在波が生じた。円柱状の容器の中心軸に平行かつ上向きに x 軸をとる。下側、上側から入射する音波による、気体の密度の ρ_0 からの変化量は時刻 t 、位置 x において、それぞれ $A \cos\left(\frac{2\pi x}{D} - \frac{2\pi t}{T}\right)$, $A \cos\left(\frac{2\pi x}{D} + \frac{2\pi t}{T}\right)$ と表せるとする。 A, T, D はそれぞれ音波の振幅、周期、波長である。 A は可変である。光線は容器の半径や D に比べて十分細いとする。

(次ページにつづく)

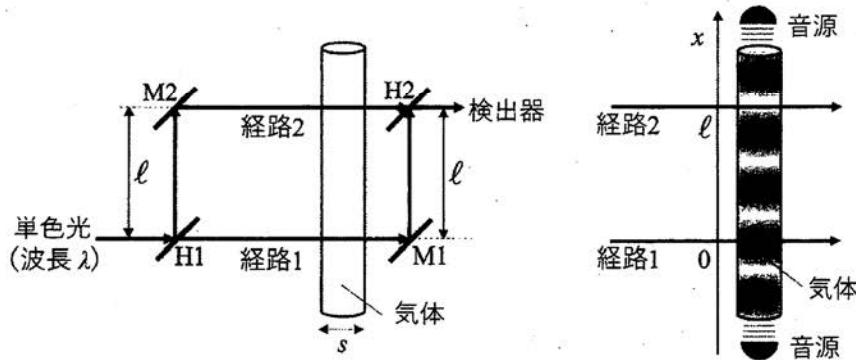


図 4

図 5

(2) 定在波による気体の密度の ρ_0 からの変化量 $\Delta\rho(x, t)$ は以下のように書ける。

$$\Delta\rho(x, t) = g(x) \cos\left(\frac{2\pi t}{T}\right)$$

関数 $g(x)$ を x, A, D を用いて表し、腹と節の位置をそれぞれ D および正の整数 k ($k = 1, 2, 3, \dots$) を用いて表せ。必要ならば三角関数の加法定理 $\cos(X \pm Y) = \cos X \cos Y \mp \sin X \sin Y$ (複号同順) を用いてよい。

密度変化による気体の屈折率の n_0 からの変化量 $\Delta n(x, t)$ は、 B を定数として $\Delta n(x, t) = B\Delta\rho(x, t)$ と書けるとする。そのため、経路 1、経路 2 の光路長は、光が気体を通る位置 x と時刻 t に依存する。経路 1 は $x = 0$ にあり、経路 2 は $x = l$ の位置にある。また、以下では $\cos\left(\frac{2\pi t}{T}\right) = 1$ を満たす時刻に光の強度を測定する実験を考える。

(3) 経路 1 の光路長から経路 2 の光路長を引いた光路差 L を、 A, B, D, ℓ, s を用いて表せ。

$\ell = \frac{D}{2}$ とし、まず音波の振幅 A を 0 として検出される光の強度を測定した。次に A を 0 から少しづつ増やして測定を繰り返したところ、 A の変化にともなって光の強度が変動した。最も明るくなったときを明の状態、最も暗くなったときを暗の状態とする。

(4) 2 回目の暗の状態となった時の振幅 A を、 B, D, s, λ の中から必要なものを用いて表せ。

(次ページにつづく)

次に, A を問 (4) の値に固定し, $\ell = \frac{D}{2}$ として検出される光の強度を測定した. ℓ を $\frac{D}{2}$ から少しづつ増やして $\ell = 2D$ になるまで測定を繰り返したところ, ℓ の変化にともなって光の強度が変動した. 最も明るくなったときを明の状態, 最も暗くなったときを暗の状態とする.

(5) 光路差 L の ℓ に対する変化の様子を, ℓ を横軸, L を縦軸にとり, 解答用紙の図に描け. 次に, 経路 2 が定在波の腹を通るような ℓ の位置を同じ図に示せ.

(6) ℓ が $\frac{D}{2} \leq \ell \leq 2D$ のとき, 暗となる ℓ の値はいくつあるか, 問 (5) の図を用いてその根拠とともに答えよ.

令和 6 年度 東北大学理学部 AO 入試Ⅱ期 (化学系)

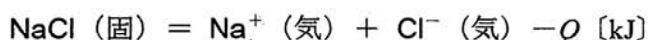
適性試問 A

令和 5 年 11 月 4 日 (土)

9 : 15 ~ 10 : 30

受験番号 _____ 氏名 _____

注意事項


1. 試験開始の合図があるまで、この問題冊子、解答用紙を開かないこと。
2. 試験開始後、全ての問題冊子と解答用紙が揃っているかどうかを確認すること。
なお、本冊子に落丁、乱丁、印刷不鮮明の箇所などがある場合は申し出ること。
3. **[1]から[3]**の問題の解答は、それぞれの解答用紙の指定された箇所に記入すること。
また、解答用紙すべてに受験番号と氏名を記入すること。
4. 計算用紙は、草案や計算のために使用してよいが、裏には書かないこと。
また、用紙は回収するので、受験番号と氏名を記入すること。
5. この問題冊子も回収するので、表紙に受験番号と氏名を記入すること。

(解答用紙 **1** に解答せよ)

1 次の文章[I], [II]を読み, 以下の問1から問7に答えよ。

[I] 結晶を, その構成粒子である原子・分子・イオンにまで, ばらばらにするのに必要なエネルギーを **ア** エネルギーという。例えば, 塩化ナトリウムのイオン結晶の **ア** エネルギー Q [kJ/mol] は次の熱化学方程式で表される。

一方, **イ** の法則によれば, 反応熱は反応経路によらず, 反応の初めの状態と終わりの状態で決まる。**イ** の法則を用いれば, **ア** エネルギーは, 以下の表に示すよく知られた反応過程を組み合わせて間接的に求めることができる。

熱化学方程式	反応熱またはエネルギーの名称
$\text{Na (固)} + \frac{1}{2} \text{Cl}_2 \text{ (気)} = \text{NaCl (固)} + 411 \text{ kJ}$	NaCl (固) の ウ 热
$\text{Cl}_2 \text{ (気)} = 2\text{Cl (気)} - 240 \text{ kJ}$	Cl ₂ (気) の結合エネルギー
$\text{Na (固)} = \text{Na (気)} - 92 \text{ kJ}$	Na (固) の エ 热
$\text{Na (気)} = \text{Na}^+ \text{ (気)} + \text{e}^- - 496 \text{ kJ}$	Na原子の オ エネルギー
$\text{Cl (気)} + \text{e}^- = \text{Cl}^- \text{ (気)} + 349 \text{ kJ}$	Cl 原子の カ

問1 **ア** から **カ** に最も適する語句または反応熱の名称を書け。

問2 表中に与えられたデータを使い Q [kJ] を求めその数値を書け。単位を書く必要はない。

[II] 図1に示すように、滑らかに動き重さの無視できるピストンがついた容器を考える。大気圧と容器内の圧力は同じに保たれている。初めに、容器内には1.00 mol のメタン CH_4 と2.50 mol の酸素 O_2 の混合気体が入っていたとする。この混合気体を燃焼させたところ、二酸化炭素 CO_2 と水 H_2O および未反応の O_2 のみが得られた。温度 $290\text{ K} \leq T\text{ [K]} \leq 340\text{ K}$ の範囲において飽和水蒸気圧は、式 $P_{\text{水蒸気}}(T) = 6.00 \times (T - 273)^2\text{ [Pa]}$ で近似できると仮定する。液体の水の体積、および CO_2 と O_2 の液体の水に対する溶解は無視せよ。

なお、大気圧は $1.01 \times 10^5\text{ Pa}$ 、気体定数は $R = 8.31 \times 10^3\text{ Pa} \cdot \text{L} / (\text{K} \cdot \text{mol})$ を用いよ。

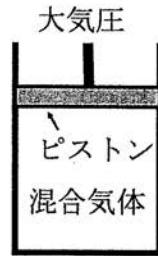


図1

問3 燃焼前、300 K における容器内の気体の体積、すなわち燃焼前の混合気体の体積を有効数字3桁で書け。単位も書け。

問4 メタン CH_4 の燃焼の熱化学方程式を考える。

水の蒸発の熱化学方程式 $\text{H}_2\text{O}\text{ (液)} = \text{H}_2\text{O}\text{ (気)} - 44\text{ kJ}$ 、および以下の結合エネルギーのデータを使い $Q_{\text{燃焼}}\text{ [kJ]}$ を求めその数値を書け。単位を書く必要はない。

結合 (分子)	結合エネルギー [kJ/mol]
C-H (CH_4)	411
O=O	494
C=O (CO_2)	799
O-H (H_2O)	459

問5 燃焼後、300 K における容器内の飽和水蒸気圧を有効数字3桁で書け。単位も書け。

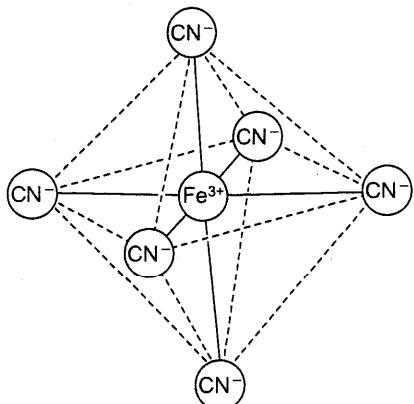
問6 燃焼後、300 K における容器内の体積を有効数字3桁で書け。単位も書け。導出過程を書け。

問7 燃焼後、容器の温度を 313 K に保ったとき、容器内に存在する気体の全物質量と体積は、それぞれ $n_1\text{ [mol]}$ および $V_1\text{ [L]}$ であった。一方、燃焼後、温度を 333 K に保った場合は、容器内に存在する気体の全物質量と体積は、それぞれ $n_2\text{ [mol]}$ と $V_2\text{ [L]}$ であった。このとき、気体の物質量の間には $n_2 = \boxed{\text{キ}} n_1$ の関係が得られる。 $\boxed{\text{キ}}$ を V_1 と V_2 を用いて書け。数値の部分は有効数字3桁で書け。導出過程も書け。

(解答用紙 2 に解答せよ)

2 次の文章を読み、以下の問1から問8に答えよ。

硫酸銅(II)五水和物 $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$ を水に溶かすと、ア色の水溶液となる。この水溶液に少
量のアンモニア水を加えると沈殿が生じるが、過剰のアンモニア水を加えるとイが生成し、
沈殿は再度溶解する。硫酸銅(II)五水和物の固体はア色であるが、250 °Cに加熱すると無水
物の硫酸銅(II) CuSO_4 が生じる。硫酸銅(II)はウ色であり、水に触れると再び硫酸銅(II)五水
和物が生成するため、水の検出に用いられる。銅鉱石から得られる粗銅には、金Au、銀Ag、ニ
ッケルNi、鉄Fe、亜鉛Znが不純物として含まれる。高純度の銅Cuは、^b粗銅の電解精錬により得
られる。銅の電解精錬では、純銅板またはステンレス板をエ、粗銅板をオとして用いる
。両極を硫酸銅(II)の希硫酸溶液に浸し、0.3~0.4 Vの低電圧で電気分解すると、純銅板またはス
テンレス板に高純度の銅が析出する。


過マンガン酸カリウム KMnO_4 は、水に溶けて過マンガン酸イオン MnO_4^- を含むカ色の水
溶液になる。過マンガン酸イオンは酸化剤としてはたらき、酸性溶液中ではマンガン(II)イオン
 Mn^{2+} に、^a塩基性溶液中では酸化マンガン(IV) MnO_2 になる。マンガン(II)イオンを含む水溶液は
キ色であるため、過マンガン酸イオンは酸性条件下における酸化還元滴定の指示薬として
も機能する。

問1 文中の空欄 アに入る適切な語句を書け。

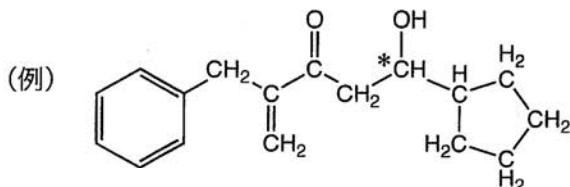
問2 下線 a)の化学反応式またはイオン反応式を書け。

問3 文中の空欄 イに入る適切な化学式またはイオン式、およびその名称を書け。また、解答
した化学式またはイオン式の立体構造を、下の表記例にしたがい図示せよ。

(表記例)

問4 文中の空欄 **ウ**に入る適切な語句を書け。

問5 文中の空欄 **工**, **オ**に入る適切な語句を書け。


問6 下線 b)に関して、電解精錬により粗銅に不純物として含まれる金、銀、ニッケル、鉄、亜鉛が除去できる理由を簡潔に記述せよ。

問7 文中の空欄 **力**, **キ**に入る適切な語句を書け。

問8 下線 c)に関して、過マンガン酸イオンから酸化マンガン(IV)が生じる反応を示す、電子 e^- を含むイオン反応式を書け。

(解答用紙 3 に解答せよ)

3 次の文章[I]および[II]を読み、以下の問1から問8に答えよ。構造式や不斉炭素原子の表示(*)を求められた場合は、以下の例にならって書け。ただし、鏡像異性体は区別しない。計算のために必要な場合には、以下の数値を使用せよ。

原子量 H = 1 C = 12 O = 16 Br = 80

[I] ベンゼンは、6個の炭素原子が正六角形の環状に結合し、それぞれの炭素原子に水素原子が結合した構造をもつ、無色で特有のにおいをもつ液体である。また、ベンゼン環の水素原子が他の置換基で置き換えられた化合物も数多く存在する。ベンゼン環の炭素原子に、1つのヒドロキシ基が直接結合した化合物を **ア** という。ベンゼン環の水素原子2個がメチル基で置換された化合物を **イ** という。ベンゼン環の炭素原子に、1つのヒドロキシ基と1つのカルボキシ基がオルト位の位置で結合した化合物を **ウ** という。現在 **ア** は、**エ** という方法で工業的に生産されている。

問1 文中の空欄 から に入る適切な語句を書け。

問2 ア に関する次の(a)から(e)の説明のうち正しいものを全て選び、解答欄の記号を○で囲め。

- (a) ナトリウムと反応して水素を発生する。
- (b) 水溶液中で安息香酸よりも強い酸性を示す。
- (c) 塩化鉄(III)水溶液を加えると、黄色の呈色反応を示す。
- (d) 酸化すると安息香酸が生成する。
- (e) 臭素水を十分に加えると、白色沈殿を生じる。

問3 ベンゼン環の水素原子が2つのメチル基と1つのヒドロキシ基で置換された化合物について、可能な異性体の数を書け。

[II] 分子式が $C_{28}H_{30}O_8$ で表される化合物 **A** がある。化合物 **A** は 1 つのベンゼン環と 2 つの不斉炭素原子をもつ。化合物 **A** について以下の実験 1 から実験 10 を行った。

実験 1 化合物 **A** を水酸化ナトリウム水溶液中で加熱した後、希塩酸で処理すると、分子式が $C_8H_6O_6$ の化合物 **B**、分子式が C_5H_8O の化合物 **C**、分子式が $C_5H_6O_2$ の化合物 **D** が 1:2:2 の割合で得られた。

実験 2 化合物 **C** と **D** はそれぞれ不斉炭素原子を 1 つもっていた。

実験 3 化合物 **C** は銀鏡反応を示した。

実験 4 化合物 **C** を適切な酸化剤で酸化すると、化合物 **D** が得られた。

実験 5 化合物 **C** を臭素と反応させると、分子量が 160 増加した化合物 **E** が得られた。化合物 **E** は不斉炭素原子を 2 つもっていた。

実験 6 化合物 **B** に無水酢酸を作用させると、化合物 **F** と化合物 **G** が 1:2 の割合で得られた。この際、化合物 **F** は化合物 **B** に対して、分子量が 84 増加していた。

実験 7 化合物 **F** を加熱すると、分子量が 18 減少した化合物 **H** が得られた。

実験 8 化合物 **A** を適切な触媒の存在下で水素と反応させると、分子量が 12 増加した化合物 **I** が得られた。

実験 9 適切な条件下で、化合物 **A** のベンゼン環の水素原子の 1 つを臭素原子で置き換えたところ、得られた化合物の異性体の数は 1 つであった。

実験 10 適切な機器分析を行ったところ、化合物 **A** はベンゼン環の水素原子が隣り合っていない構造であることがわかった。

問 4 化合物 **C** の構造式を書け。不斉炭素原子には、*をつけて表せ。

問 5 化合物 **C** の異性体の中で、以下の条件をすべて満たすものの構造式をすべて書け。フェーリング液を還元する。不斉炭素原子をもたない。環状構造をもつ。

問6 化合物**G**の構造式を書け。不斉炭素原子をもつ場合には、*をつけて表せ。

問7 化合物**H**の構造式を書け。不斉炭素原子をもつ場合には、*をつけて表せ。

問8 化合物**I**の構造式を書け。不斉炭素原子をもつ場合には、*をつけて表せ。

令和6年度 東北大学理学部AO入試Ⅱ期（化学系）

適性試問 B

令和5年11月4日（土）

11:00～11:50

受験番号_____

氏名_____

注意事項

1. 試験開始の合図があるまで、この問題冊子、解答用紙を開かないこと。
2. 試験開始後、全ての問題冊子と解答用紙が揃っているかどうかを確認すること。
なお、本冊子に落丁、乱丁、印刷不鮮明の箇所などがある場合は申し出ること。
3. **4**及び**5**の問題の解答は、それぞれの解答用紙の指定された箇所に記入すること。
また、解答用紙すべてに受験番号と氏名を記入すること。
4. 計算用紙は、草案や計算のために使用してよいが、裏には書かないこと。
また、用紙は回収するので、受験番号と氏名を記入すること。
5. この問題冊子も回収するので、表紙に受験番号と氏名を記入すること。

(解答用紙 **4** に解答せよ)

4 溶液に関する以下の文章 [I], [II] を読み、問1から問8に答えよ。

[I] 不揮発性物質を溶かした希薄な溶液では、純溶媒に比べて蒸発する溶媒分子の数が減少する。このため、同温の純溶媒に比べて希薄溶液の蒸気圧は低くなる。この現象が蒸気圧降下である。

図1は水 1.00 kg に 0.100 mol のスクロースを溶かした水溶液 **A**, 水 1.00 kg に 0.080 mol の塩化ナトリウムを溶かした水溶液 **B**, および純水 **C** のそれぞれの蒸気圧と温度の関係を模式的に示したものである。ただし、塩化ナトリウムは完全に電離しているものとする。

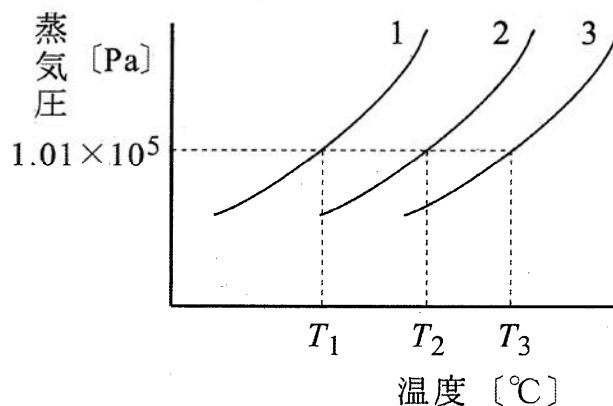


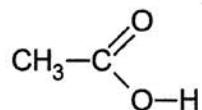
図 1

問1 **A**, **B**, **C** は図中の 1, 2, 3 のどの曲線に対応するか。それぞれ番号で記せ。

問2 図中の温度 T_2 が T_1 よりも 0.052 K 高かった。このとき、 T_3 は T_2 よりも何 K 高いか。導出過程を簡単に記し、小数点第3位まで求めよ。

問3 U字管の中央を溶媒分子のみを通す半透膜で仕切り、一方の側に **A** を、他方の側に **B** を液面の高さが等しくなるように入れた。これを長時間放置した時に液面の高さに関して起こる変化を、理由も含めて述べよ。

問4 **A**, **B**, **C** をふたのない容器に入れて沸騰させ続けると、それらの沸点はどのように変化するか。それぞれの変化を簡単に説明せよ。


〔II〕 溶液を冷却すると、まず溶媒だけが凝固し始める。この温度を溶液の凝固点という。一般に、溶液の凝固点は純溶媒の凝固点より低くなる。この現象を凝固点降下という。

ベンゼンのモル凝固点降下は $5.12 \text{ K} \cdot \text{kg/mol}$ 、凝固点は $5.53 \text{ }^{\circ}\text{C}$ である。ベンゼン 50.0 g に酢酸 $\text{CH}_3\text{COOH} 0.600 \text{ g}$ を溶かした溶液の凝固点は $5.00 \text{ }^{\circ}\text{C}$ であった。

問5 凝固点降下の結果を用いて、この溶液中で酢酸分子が1分子ずつ溶解していると仮定した場合の、酢酸分子の見かけの分子量を有効数字3桁で求めよ。導出過程も示すこと。

問6 実際には、ベンゼン溶液中で酢酸の一部は分子間力によって2分子が結合して、1つの分子のようにふるまっている。この現象を会合といい、2分子の会合体を二量体という。また、酢酸分子の中で会合して二量体を形成している分子の割合を会合度とい。う。例えば1 molの酢酸の会合度が0.5の場合、1分子として存在する酢酸が0.5 mol、酢酸の二量体が0.25 mol存在することになる。凝固点降下の結果と実際の酢酸の分子量の値を用いて、ベンゼン中の酢酸の会合度を求めることができる。凝固点降下の実験結果から、酢酸の会合度を有効数字3桁で求めよ。ただし、酢酸の分子量 = 60.0とする。導出過程も示すこと。

問7 下に示す酢酸分子の構造式を解答欄に書き、もう1分子の酢酸の構造式を書き入れて二量体の構造を示せ。分子間力が働いている部分を点線で結んで表すこと。

問8 日常生活の中で、凝固点降下の現象を利用している実例を1つ挙げよ。

(解答用紙 5 に解答せよ)

5 次の文章を読み、以下の問1から問7に答えよ。

周期表の1族に属する水素以外の元素をアルカリ金属という。アルカリ金属の单体は銀白色で、反応性が高い。例えばナトリウム Na の单体は室温で空気と反応するため、石油（灯油）中で保存される。水酸化ナトリウム NaOH は化学工学において広く用いられている化合物であり、その水溶液は^{a)} 強い塩基性を示す。

炭酸ナトリウム Na_2CO_3 は工業的には ア と イ を原料としてアンモニアソーダ法により合成され、^{b)} ガラスやセッケンの製造などに用いられている。硫酸ナトリウム Na_2SO_4 は人体への有害性が低いことから、食品添加物や医薬用として幅広く用いられている。また疎水コロイドの溶液に Na_2SO_4 を少量加えると、沈殿が生じる。この現象は ウ という。

問1 文中の空欄 ア から ウ に入る適切な語句を書け。

問2 アルカリ金属に関する次の(a)から(e)の説明のうち正しいものをすべて選び、解答欄の記号を○で囲め。

- (a) アルカリ金属の单体は強い酸化剤として働く。
- (b) Na の单体は常温で水と激しく反応して、酸素を発生する。
- (c) アルカリ金属の原子は価電子を1個もち、1価の陽イオンになりやすい。この傾向は原子番号が大きいものほど強くなる。
- (d) リチウム Li は炎色反応で黄色を呈する。
- (e) 炭酸水素ナトリウム NaHCO_3 に希塩酸を加えると、二酸化炭素 CO_2 が発生する。

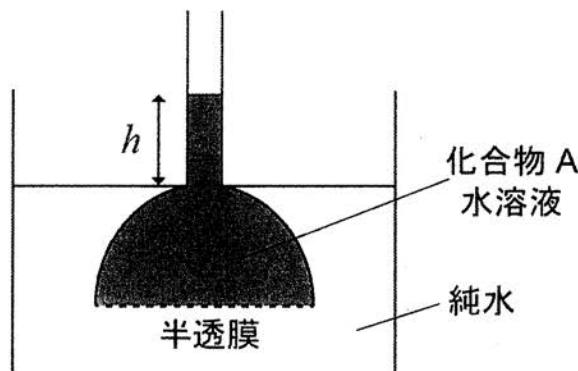
問3 下線 a) に関連する以下の文章の空欄 エ から カ に入る適切な値を小数点以下第2位まで求めよ。ただし、アンモニウムイオン NH_4^+ の電離定数を $10^{-9.26}$ mol/L、水のイオン積 K_w を 1.00×10^{-14} (mol/L)²、 $\log_{10} 3 = 0.480$ 、 $\log_{10} 7 = 0.850$ とする。

水 100 mL に 2.00×10^{-2} mol/L の NaOH 水溶液を 20.0 mL 添加した場合、その水溶液の pH は エ になる。一方、緩衝液に NaOH 水溶液を加えた場合を考える。ここに、 2.00×10^{-2} mol/L のアンモニア水溶液 50.0 mL と 2.00×10^{-2} mol/L の塩化アンモニウム水溶液 50.0 mL を混合した水溶液がある。この水溶液の pH は オ である。この水溶液に 2.00×10^{-2} mol/L の NaOH 水溶液を 20.0 mL 添加した場合、水溶液の pH は カ となる。このように緩衝液の場合、水と比べて塩基を加えることによる pH 変化は少ない。

問4 亜硫酸水素ナトリウムに希硫酸を加えると気体が発生する。この反応を化学反応式で書け。

問5 下線 b) に関して、原料に Na_2CO_3 を用いて製造されるガラスとしてソーダ石灰ガラスがある。ソーダ石灰ガラスの用途として適切なものを次の (a) から (d) の中から 1 つ選び、解答欄の記号を○で囲め。

(a) 光ファイバー (b) 耐熱容器 (c) 窓ガラス (d) 光学レンズ


問6 コロイドに関する以下の問いに答えよ。

沸騰した水に塩化鉄 (III) FeCl_3 水溶液を加えた後、室温まで冷やして得られる水溶液をセロハン袋に入れ、ビーカーに入れた純水に浸した。十分に放置した後、セロハン袋の外の水溶液を 2 本の試験管に取った。試験管にそれぞれ硝酸銀、ヘキサシアニド鉄 (II) 酸カリウムを加えた後の様子として適切なものを次の (a) から (f) の中から 1 つ選び、解答欄の記号を○で囲め。

	硝酸銀を 加えた後の様子	ヘキサシアニド鉄 (II) 酸カリウムを 加えた後の様子
(a)	沈殿は生じない	沈殿は生じない
(b)	沈殿は生じない	青色沈殿が生じる
(c)	白色沈殿が生じる	沈殿は生じない
(d)	白色沈殿が生じる	青色沈殿が生じる
(e)	黒色沈殿が生じる	沈殿は生じない
(f)	黒色沈殿が生じる	青色沈殿が生じる

問7 デンプンのように分子量の大きな化合物（高分子化合物）は1分子でコロイド粒子の大きさを持つ。高分子化合物の分子量測定に関する以下の文章の空欄 [キ] から [ケ] に入る適切な値を有効数字2桁で書け。ただし、水のモル凝固点降下を $1.85 \text{ K} \cdot \text{kg/mol}$ 、気体定数 $R = 8.3 \times 10^3 \text{ Pa} \cdot \text{L/(mol} \cdot \text{K)}$ 、高分子化合物水溶液の密度 1.00 g/cm^3 、水銀の密度 13.6 g/cm^3 、標準大気圧 ($1.01 \times 10^5 \text{ Pa}$) の水銀柱の高さを 760 mm とする。なお、半透膜を通じた溶媒の移動による溶液の濃度変化は無視できるものとする。

分子量 1.00×10^5 の高分子化合物A 1.00 g を含む水溶液 100 mL を考える。この水溶液の凝固点は [キ] $^{\circ}\text{C}$ であるため、このような小さい温度変化を正確に測定することは困難である。一方、この水溶液の浸透圧は 27°C において [ク] Pa である。したがって、図に示す装置を用いて測定した場合、液柱の高さ h は [ケ] mm となる。この液面差は精度よく測定可能である。このように高分子化合物の分子量測定には浸透圧を用いた手法がよく用いられる。

令和 6 年度(2024 年度)
東北大学理学部地球科学系

A0 入試 II 期

問題 I

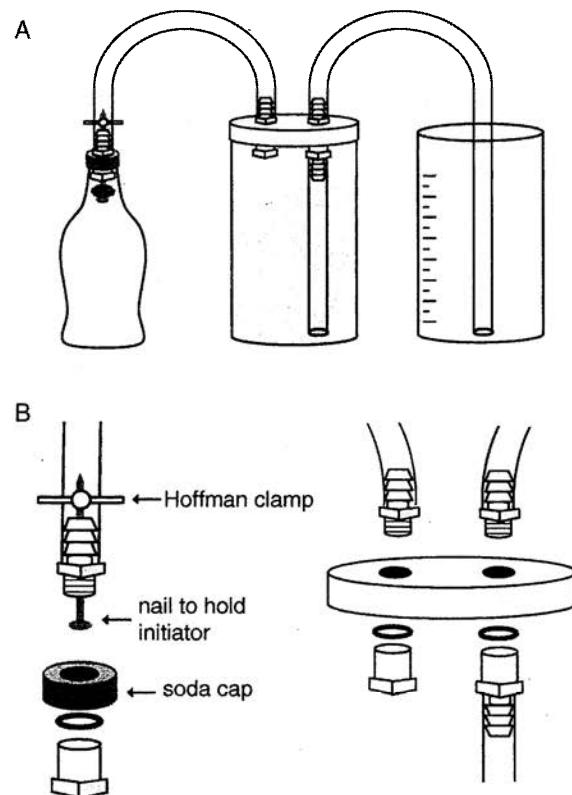
試験時間 9:15-9:55

注 意 事 項

1. 机の上には受験票、筆記用具、時計以外は置かないこと。
2. 携帯電話や音の出る機器などは、電源を切ってかばんの中に入れること。
3. 合図があるまで問題冊子を開かないこと。
4. 試験開始後、この問題冊子と全ての解答用紙には受験番号および氏名を記入すること。
ページの脱落、印刷不鮮明などの箇所がある場合は試験監督者に申し出ること。
5. 解答はすべて解答用紙に記入すること。
6. 解答用紙を持ち帰ることはできません。白紙の場合でも全ての解答用紙を提出して下さい。
7. 問題について質問がある時は、発言せずに挙手をして、試験監督者に知らせること。
8. この問題冊子は回収します。

受験番号 _____

氏 名 _____


このページは余白

このページは余白

次の文章を読み、以下の問い合わせ（問1～問5）に答えよ。

The simple apparatus for quantifying the soda geyser in a laboratory setting is shown schematically in Figure A. In this study, we used carbonated soft drinks with artificial sweetener (leftmost side of Figure A), which we refer to throughout as “soda”. The lid of a 64 oz wide-mouth plastic jar (middle of Figure A) was drilled and fitted with plastic hose connectors on the inside and outside surfaces. a) O-rings were used to create an airtight seal for the fittings to the lid surface. Figure B shows an expanded view of the caps and fittings on the soda bottle and water reservoir. The output tube was directed into a 1 L beaker (rightmost side of Figure A) for measuring the volume change of the soda geyser. A length of tubing long enough to reach the bottom of the jar was attached to the remaining barb on the interior side of the lid (the jar output). The 64 oz jar was filled with water and the lid assembly was tightened to achieve an airtight seal. The hose barb was removed on the inside of the cap with a razor blade, and this cap served as the connection to each soda bottle. A 3 1/2 in. galvanized nail was used to hold all b) initiator objects out of the soda until we were ready to begin the experiment. Candies were threaded onto the nail and held by the nail head, whereas a small wire cage was hung from the nail head for more complicated objects, such as the sugar cubes. Once loaded with the initiator, the nail was slid into the soda cap connector from the inside and a Hoffman clamp was tightened onto it to hold it while the cap was tightened onto each soda bottle. A soda bottle was opened gently, its cap was completely removed, and the bottle cap containing the nail and initiator was tightened onto it. When everything was secured, the hose clamp holding the nail was loosened, dropping the nail and initiator(s) into the soda. CO₂ and soda were forced through the tubing into the water-filled plastic jar. The CO₂ pressurized the headspace of the jar and forced the water (mixed with some soda) through the output tube into the measurement beaker. c) Once most of the CO₂ was released, the pressure in the headspace equaled atmospheric pressure, the volume of liquid pushed out into the measurement beaker was equal to the quantity of headspace gained in both the soda bottle and the plastic jar, in other words, equal to the amount of CO₂ that was released. d) From this volume, the number of moles and molecules of CO₂ were calculated using the ideal gas law.

(参考) quantify : 定量化する	geyser : 間欠泉	schematically : 概略的に
carbonated : 炭酸を含む	oz : オンス	in. : インチ
galvanized : 亜鉛メッキ	initiator : 反応を開始させるもの	
threaded : ねじ込まれる	loaded : 仕込む	

(Adapted from "Quantifying the Soda Geyser" by Christopher J. Huber and Aaron M. Massari, Journal of Chemical Education, 2014. 一部改変)

(Adapted with permission from 'Quantifying the Soda Geyser' by Christopher J. Huber, Aaron M. Massari. Copyright © 2014 American Chemical Society.)

問1 下線部 a)を和訳せよ。

問2 下線部 b)として挙げられている物を二つ、日本語で答えよ。

問3 プラスチック瓶中の水がビーカーへ排出される原理を、日本語で、3行以内で説明せよ。

問4 下線部 c)を和訳せよ。

問5 下線部 d)のように CO_2 分子のモル数が計算されるが、その値には実験誤差をともなう。この実験で誤差が生じる要因について、あなたの考えを述べよ。

このページは余白

このページは余白

令和 6 年度(2024 年度)
東北大学理学部地球科学系
AO 入試 II 期

問題 II

試験時間 11:00-11:40

注 意 事 項

1. 机の上には受験票、筆記用具、時計以外は置かないこと。
2. 携帯電話や音の出る機器などは、電源を切ってかばんの中に入れること。
3. 合図があるまで問題冊子を開かないこと。
4. 試験開始後、この問題冊子と全ての解答用紙には受験番号および氏名を記入すること。
ページの脱落、印刷不鮮明などの箇所がある場合は試験監督者に申し出ること。
5. 解答はすべて解答用紙に記入すること。
6. 解答用紙を持ち帰ることはできません。白紙の場合でも全ての解答用紙を提出して下さい。
7. 問題について質問がある時は、発言せずに挙手をして、試験監督者に知らせること。
8. この問題冊子は回収します。

受験番号 _____

氏 名 _____

このページは余白

このページは余白

地球に関する以下の問い合わせ(問1、問2)に答えよ。

問1 図1は世界の7月の平均海面水温、図2は世界の年平均海面塩分を示したものである。これらの図を見て、以下の小問(1)～(3)に答えよ。

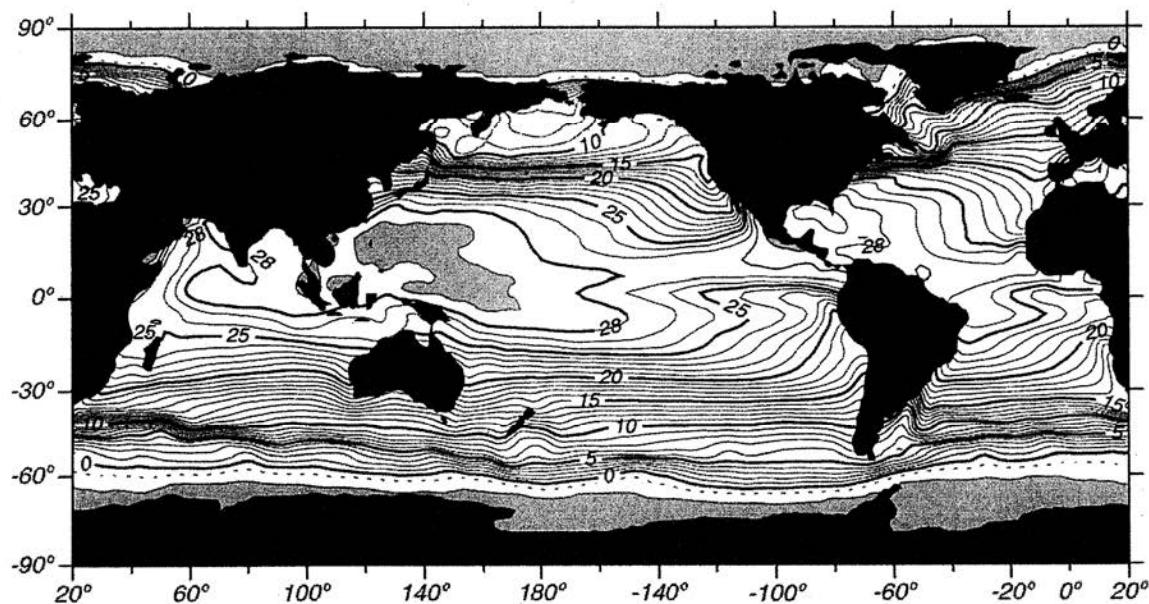


図1 世界の7月の平均海面水温
赤道付近の網掛け部分は29°C以上を示す(Stewart, 2008)。

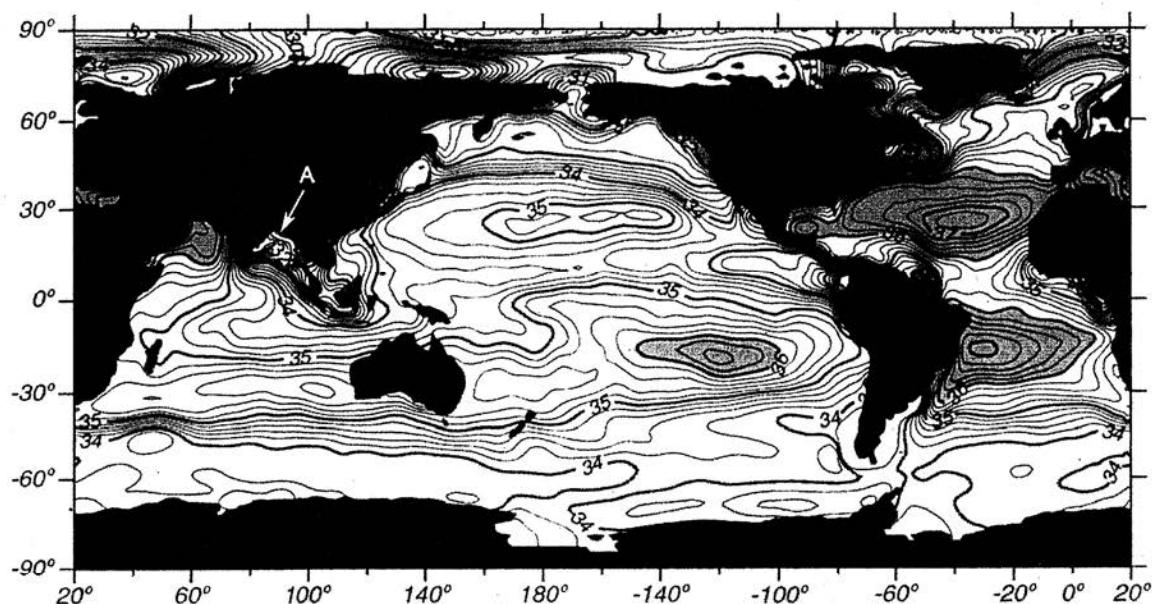


図2 世界の平均海面塩分
網掛け部分は塩分が36以上を示す(Stewart, 2008)。

- (1) 図1から読み取れる世界の平均海面水温の特徴を3つ挙げ、それぞれ1行以内で述べよ。
- (2) 図2中の海域Aにおいて塩分が低くなっている理由を、2行以内で説明せよ。
- (3) 海面水温の上昇が地球環境に与える影響について、あなたの考えを3行以内で説明せよ。

問2 次の文章を読み、以下の小問(1)～(2)に答えよ。

地球でみられる潮汐は、月や太陽といった別の天体から受ける重力の大きさが場所によって異なるために生じる。潮汐を起こす力は潮汐力(起潮力)と呼ばれる。地球が受ける潮汐力の大きさは、重力を及ぼす天体の質量に比例し、その天体との距離の3乗に反比例する。

- (1) 地球が月から受ける潮汐力は、地球が太陽から受ける潮汐力の何倍になるか。有効数字1桁で答えよ。ただし、地球の質量は $6.0 \times 10^{24} \text{ kg}$ 、月の質量は $7.3 \times 10^{22} \text{ kg}$ 、太陽の質量は $2.0 \times 10^{30} \text{ kg}$ 、地球と月との距離は $4.0 \times 10^8 \text{ m}$ 、太陽と地球との距離は $1.5 \times 10^{11} \text{ m}$ とし、計算の過程も示すこと。
- (2) 潮汐の影響を受ける河川の河口付近には堰(河口堰)が設置されることもある。河口堰を設けることの利点と欠点について、あなたの考えを4行以内で説明せよ。

このページは余白

このページは余白

令和 6 年度(2024 年度)
東北大学理学部地球科学系
AO 入試 II 期

問題 III

試験時間 13:40-14:20

注 意 事 項

1. 机の上には受験票、筆記用具、時計以外は置かないこと。
2. 携帯電話や音の出る機器などは、電源を切ってかばんの中に入れること。
3. 合図があるまで問題冊子を開かないこと。
4. 試験開始後、この問題冊子と全ての解答用紙には受験番号および氏名を記入すること。
ページの脱落、印刷不鮮明などの箇所がある場合は試験監督者に申し出ること。
5. 解答はすべて解答用紙に記入すること。
6. 解答用紙を持ち帰ることはできません。白紙の場合でも全ての解答用紙を提出して下さい。
7. 問題について質問がある時は、発言せずに挙手をして、試験監督者に知らせること。
8. この問題冊子は回収します。

受験番号 _____

氏 名 _____

このページは余白

このページは余白

次の文章を読み、以下の問い合わせ（問1～問4）に答えよ。

太陽系の惑星は微惑星の集積を経て形成したと考えられている。表に示すある隕石は a)太陽系形成初期の情報を保存する小惑星から地球に飛来したものである。この隕石の元素組成は太陽の元素組成と類似していることが知られている。太陽の元素組成は太陽光の b)スペクトルを使って調べることができる。表は、ある隕石の元素組成、地球の地殻とマントルを合わせた部分の元素組成、月の地殻とマントルを合わせた部分の元素組成を示している。

表 Siを1としたときの主要元素相対存在度

ある隕石	地球		月 (地殻+マントル)
		(地殻+マントル)	
Na	0.057	0.016	0.0017
Mg	1.07	1.25	1.12
Al	0.085	0.12	0.063
Si	1.000	1.000	1.000
K	0.0038	0.0008	0.00010
Ca	0.061	0.084	0.093
Ti	0.0024	0.0016	0.0048
Cr	0.014	0.0068	0.0035
Mn	0.010	0.0025	0.0031
Fe	0.90	0.15	0.24
Ni	0.049	0.0044	-

問1 下線部 a)について、小惑星のほとんどは火星と木星の間に存在する。海王星以遠に存在する彗星も太陽系形成初期の情報を保存している。小惑星は主に岩石から構成されている一方で、彗星は氷を多く含むことが知られている。この違いの理由について、あなたの考えを3行以内で述べよ。

問2 下線部 b)について、スペクトルとは何かを2行以内で述べよ。

問3 表を見ると、ある隕石に比べて地球の地殻とマントルを合わせた部分は Fe と Ni に乏しいことがわかる。Fe と Ni は地球の核を構成しているためであるが、これら以外の元素も核には含まれていると考えられている。どのような元素がどのくらい核に含まれているかを調べる方法について、あなたの考えを3行以内で述べよ。

問4 ある隕石に比べて月の地殻とマントルを合わせた部分で最も乏しい元素を表から二つ選べ。また、二つの元素が乏しい理由について、あなたの考えを3行以内で述べよ。ただし、Niは除くこと。

このページは余白

このページは余白

令和 6 年度
東北大学理学部
AO 入試 II 期

生物系 適性試問

注意

1. 解答時間は 9:15 ～ 10:45 です。
2. 問題は 2 問あります（問題 1, 問題 2）。
3. 解答用紙は 4 枚あります。4 枚とも、受験番号、氏名を記入してください。
4. 解答用紙の所定の場所に解答を記入してください。
5. 問題用紙は持ち帰らないでください。

問題1 次の文章を読み、以下の問い合わせに答えよ。

Rethink of Bird Evolution

A newly described fossil is as old as the “first bird,” *Archaeopteryx*, and represents a birdlike dinosaur that might have specialized in running or wading instead of flying


(a) One hundred and fifty million years ago, a young, bantam-sized, bird-like dinosaur became mired in a swamp in what is now southeastern China, and succumbed. Its fossilized remains, unearthed in 2022 and named *Fujianvenator prodigiosus*, show it to be one of the earliest bird-like dinosaurs to date from the Jurassic period. The researchers describe their discovery in a paper published today in *Nature*.

“This is really a weird (奇妙な) animal within the group of birds,” says Mark Loewen, a palaeontologist (古生物学者) at the University of Utah.

The creature had oddly lanky (ひょろ長い) legs and might have lacked the ability to fly. (b) It also doesn’t seem to conform (適合する) to the accepted bird-evolution story. Although dinosaurs were largely extinct by 66 million years ago, therapods (獣脚類), the three-clawed, hollow-boned group that included *Velociraptor* and *Tyrannosaurus rex*, had started to evolve into today’s birds. Many palaeontologists consider the first bird to be a 150-million-year-old feathered dinosaur called *Archaeopteryx*, fossils of which were found in Germany. But this study adds to mounting evidence that by the time of *Archaeopteryx*, dinosaurs had already diversified into different kinds of birds, Loewen says.

Hailu You, a palaeontologist at the Chinese Academy of Sciences, says that in the Jurassic, bird-like dinosaurs might have been occupying different ecological niches. “Early bird evolution is complicated,” he says.

Fujianvenator’s fossil lacks a head and a complete tail, but its body and limbs show a medley of

Fujianvenator prodigiosus, a bird-like dinosaur discovered near Nanping in China, had unusually long legs and did not seem equipped for flight (artist’s impression). Credit: Mr. Chuang Zhao

traits similar to those of other bird-like dinosaurs, such as the relative lengths of the fingers, and details of the pelvis (骨盤) and vertebrae.

But it didn't have many modifications that would contribute to flight. For example, it had a shortened shoulder blade and fingers more specialized for grabbing (つかむ). ^(c) Strangest of all are the bird's hyper-elongated hind legs (後ろ脚), in which the lower leg bone — the tibia (脛骨) — is twice as long as the thigh bone (大腿骨). Such long legs indicate a highly skilled runner, perhaps similar to a roadrunner (*Geococcyx* spp.), says Bhart-Anjan Bhullar, a palaeontologist at Yale University.

Alternatively, those stilts (長い脚) could have been used for wading (浅瀬を歩く). In the area where *Fujianvenator* was found, the researchers also uncovered a variety of swamp creatures, which they call the Zhenghe fauna. These fossils included fish, turtles and other aquatic reptiles. Swamps were a previously unknown habitat for early birds. To know whether the bird's legginess was an adaptation to swamp life or high-speed running, researchers would need to examine the ends of its toes for signs of webbing — but those digits (手足の指) are poorly preserved. Either scenario is equally possible, the authors write.

The fact that the dinosaur was found at all was a stroke of luck. Researchers uncovered the fossil at a site near Nanping in Fujian province, where no dinosaurs have been found before. And examples of late-Jurassic bird-like dinosaurs are rare because their hollow bones are fragile and preserve less well. Fossilization requires ideal conditions such as an absence of oxygen to prevent decay — conditions that lakes or swamps can provide.

^(d) 化石が残ることはまれであり、*Fujianvenator* の発見は初期の鳥類の進化の理解に有用である, says Bhullar. “Even at their earliest stages, the closest fossil relatives of birds were diversifying in interesting ways. There are many, many such things left to be discovered,” he says. “We've only scratched the surface of the anatomical and lifestyle diversity of these animals.”

Nature DINOSAURS 'Weird' dinosaur prompts rethink of bird evolution.
<https://www.scientificamerican.com/article/weird-dinosaur-prompts-rethink-of-bird-evolution/>
© 2023 SCIENTIFIC AMERICAN, A DIVISION OF SPRINGER NATURE AMERICA, INC.
を一部改変

(Used with permission of Springer Nature, from 'Weird' dinosaur prompts rethink of bird evolution', by Jude Coleman, Nature Research 621, 7978, 2023; permission conveyed through Copyright Clearance Center, Inc.)

問 1 下線部(a)を数字で表せ。

問 2 下線部(b)について、この発見は最初期の鳥類進化の時期に関する従来のどのような学説に合わないか、また、合わないと考える根拠を記せ。

問 3 下線部(c)について、このような脚の構造から考えられる 2 つのシナリオとはどのようなものか、また、それぞれの根拠を記せ。

問 4 下線部(d)を英訳せよ。

問 5 図に描かれている動物について、想像に基づいて描かれている器官を 2 つ記せ。

問題2 次の文章を読み、以下の問い合わせに答えよ。

動物や植物の体を構成する細胞は、基本的には受精卵という1つの細胞から始まり、細胞分裂と細胞分化を繰り返すことによってすべての細胞が生み出される。われわれヒトは脊椎動物というグループに属する動物の1種である。脊椎動物の受精卵は卵割によって複数の細胞になったのちに、胚葉と呼ばれる3種類の細胞群に分化する。外胚葉からは脳・脊髄や表皮など、(a)中胚葉からは脊椎骨や骨格筋など、そして内胚葉からは消化管の上皮など、さまざまな細胞が分化し、最終的にヒトの場合200種類ほどの細胞へと分化する。

細胞分化の結果として生じた赤血球がヘモグロビンタンパク質を産生したり、(b)神経細胞がアセチルコリンを合成したりするなど、細胞種に特徴的な分子構成をもつようになる。これは、30兆個以上あると言われるヒトの細胞が等しくもつゲノム（その個体が持つ遺伝情報の総体）から、(c)必要な遺伝子を選択して転写するからである。

ゲノムは、ある個体から次世代に受け継がれる。このゲノムの引継ぎによって親の形質が次世代に伝わる現象を遺伝と呼び、遺伝を担う細胞は配偶子（生殖細胞、脊椎動物では精子と卵）である。ゲノムが生殖細胞によって次世代に引き継がれる際に(d)遺伝子に変異が生じることがあり、それにより個体の形態や性質（形質）が変化することがある。こうして生じた変異個体の割合が、自然選択や中立進化によって生物集団内で変化することがあり、場合によっては集団内のすべての個体がその変異形質を持つことになる。(e)生物はこのような変化を長い長い年月くり返すことによって、多様な生物種へと進化してきたと考えられている。

問1 中胚葉は体節や側板などに分化したのちに、さらにさまざまな細胞へと分化する。下線部(a)の脊椎骨と骨格筋が体節に由来することを示すためには、どのような実験を行ってどのような結果になればよいか、説明せよ。

問2 下線部(b)について、神経細胞においてアセチルコリンがどのように機能するかを説明せよ。

問3 下線部(c)について、真核細胞の遺伝子発現調節における「調節タンパク質（転写因子）」のはたらきを説明せよ。

問4 下線部(d)について、形質変化の原因が、タンパク質をコードしている遺伝子部分に生じた変異ではない場合、ゲノムのどのような領域に変異が生じ、どのようなしくみで形質が変化したと考えられるかを説明せよ。

問 5 下線部(e)について、地球上に生命が誕生したのは約 40 億年前に 1 度だけであり、それ以降このような変化を生物は続け、その結果として現在の地球上のすべての生物が存在すると考えられる。生命の誕生は 1 度しか起こっていないと考えないとうまく説明できない現象を 1 つ挙げ、その理由を説明せよ。

令和 6 年度 AO 入試問題集 (医学部医学科)

公表期限：2027 年 3 月末

東北大学アドミッション機構

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験①問題

令和 5 年 11 月 4 日

志願学部／学科	試験時間	ページ数
医学部 医学科	9:30~10:50 (80 分)	6 ページ

注 意 事 項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 6 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1 枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

——このページは白紙——

A15

——このページは白紙——

A15

1

以下の問いに答えよ。

(1) 1, 2, 3, 4, 5, 6 の目が等しい確率で出る 1 個のさいころを 3 回続けて投げる。はじめの 2 回投げて出た 2 つの目が連続する 2 つの数であり、続けて 3 回目に投げて出た目も含めると連続する 3 つの数となる確率を求めよ。ただし、出る目の順番は問わない。

(2) $x > 1$ とする。次の不等式を満たす x の値の範囲を求めよ。

$$\log_3 x + \log_x 9 \leq \frac{9}{2}$$

(3) 次の定積分の値を求めよ。

$$\int_{-1}^1 |x(x+1)^2| dx$$

2 三角形ABCにおいて、 $AB = 7$, $BC = 5$, $CA = 3$ とする。辺BCを4:1に内分する点をDとする。頂点Bから直線ACに垂線を引き、直線ACとの交点をEとする。 $\overrightarrow{AB} = \vec{b}$, $\overrightarrow{AC} = \vec{c}$ とするとき、次の問いに答えよ。

- (1) 内積 $\vec{b} \cdot \vec{c}$ の値を求めよ。
- (2) 線分AEの長さを求め、 \overrightarrow{AE} を \vec{c} を用いて表せ。
- (3) 三角形ABCの面積を求めよ。
- (4) 点Eに関して点Cと対称な点Fとする。直線ADと直線BFとの交点をGとするとき、三角形BDGの面積を求めよ。

3 xy 平面上の曲線 C_0 が媒介変数 t を用いて次のように表される。

$$\begin{cases} x = 3 \cos t + \sin t \\ y = \cos t + 3 \sin t \end{cases} \quad (0 \leq t < 2\pi)$$

また、曲線 C_0 を原点の周りに $\frac{\pi}{4}$ だけ回転した曲線を C_1 とする。
次の問い合わせよ。

- (1) 媒介変数 t を用いずに、 C_0 を表す x と y との関係式を求めよ。
- (2) C_1 を表す x と y との関係式を求めよ。
- (3) C_0 の $y \geq 0$ の部分と x 軸とで囲まれた領域 E を図示し、 E の面積を求めよ。
ただし、 E の境界線はすべて含むものとする。

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験② 封筒

令和 5 年 11 月 4 日

志願学部／学科	試験時間	問題冊子数
医学部 医学科	13:00~14:20 (80 分)	3 冊

注意事項

- 試験開始の合図があるまで、この封筒を開いてはいけません。
- この封筒には、「問題冊子」3冊、「解答用紙」3種類、「メモ用紙」1冊が入っています。
- 筆記試験②は、＜必答問題1＞、＜選択問題1＞、＜選択問題2＞の3冊からなります。
※ 必答問題1の他に、＜選択問題1～2＞のうちから1つを選択し、解答してください。選択問題を選択しなかった場合は、失格となります。
※ ＜選択問題＞の解答用紙1枚目の所定の欄に、選択の有無を で囲んでください。

選択する場合：

選択する
選択しない

選択しない場合：

選択する
選択しない

- ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。問題冊子のホチキスは外さないでください。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」は1枚につき1か所の所定の欄に、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。選択しない問題の解答用紙にも受験記号番号を記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は、「解答用紙」は全て回収しますので持ち帰ってはいけません。
本封筒、「問題冊子」及び「メモ用紙」は持ち帰ってください。

令和 6 年度（2024 年度）東北大学
AO 入試（総合型選抜）Ⅱ期

筆記試験②

＜必答問題 1 ＞

令和 5 年 11 月 4 日

志願学部／学科	試験時間	ページ数
医学部 医学科	13:00~14:20 (80 分)	15 ページ

——このページは白紙——

——このページは白紙——

必要があれば次の数値を用いなさい。

気体定数： $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$ 絶対零度： $-273 \text{ }^\circ\text{C}$

アボガドロ定数： $6.0 \times 10^{23} / \text{mol}$ ファラデー定数： $9.65 \times 10^4 \text{ C/mol}$

原子量： H = 1.0 Li = 6.9 C = 12.0 O = 16.0 Cl = 35.5 K = 39.1

1 不揮発性の物質を純溶媒に溶解した溶液の蒸気圧に関する文〔I〕と2種類の揮発性の液体どうしを混合した溶液の蒸気圧に関する文〔II〕を読んで、問1から問5に答えなさい。

〔I〕 気液平衡のときに蒸気が示す圧力を飽和蒸気圧または単に蒸気圧という。一定温度において、液体状態にある純粋な物質（純溶媒）はその物質に固有の蒸気圧を示す。一方、純溶媒に不揮発性の物質を溶解した溶液の蒸気圧は純溶媒よりも低くなる。この現象を蒸気圧降下といい、純溶媒の蒸気圧 P_0 と溶液の蒸気圧 P には次のような関係がある。

$$P = xP_0 \quad \text{—— ①}$$

P [Pa]：溶液の蒸気圧

x ：溶媒のモル分率

P_0 [Pa]：純溶媒の蒸気圧

モル分率とは、混合物に含まれるすべての成分の総物質量 [mol] に対する特定の成分の物質量 [mol] の割合のことである。溶媒のモル分率 x は、溶媒の物質量を N [mol]、不揮発性の溶質の物質量を n [mol] とすると、

$$x = \frac{N}{N+n} \quad \text{—— ②}$$

と表される。

蒸気圧降下の度合いである $P_0 - P$ を ΔP で表すと、純溶媒の蒸気圧 P_0 に対する ΔP の割合は、式①、②より

$$\frac{\Delta P}{P_0} = \frac{P_0 - P}{P_0} = \boxed{\text{ア}} \quad \text{—— ③}$$

また、溶媒のモル質量を M [g/mol] として、 M, N, n を用いてその溶液の質量モル濃度 m [mol/kg] を表すと、

$$m = \boxed{\text{イ}} \times 10^3 \quad \text{—— ④}$$

希薄溶液においては $n \ll N$ であるから、 $n + N \approx N$ と近似すると、

式③より

$$\Delta P = \boxed{\text{ア}} \times P_0 \approx \frac{n}{N} \times P_0 \quad \text{—— ⑤}$$

式④より

$$\frac{n}{N} = \boxed{\text{ウ}} \times 10^{-3} \quad \text{—— ⑥}$$

したがって

$$\Delta P = km \quad (k: \text{比例定数}) \quad \text{—— ⑦}$$

以上より、希薄溶液においては、蒸気圧降下の度合いはその溶液の質量モル濃度に比例するといえる。

問 1 空欄 **ア** にあてはまる文字式を N と n を用いて、空欄 **イ** にあてはまる文字式を N, n, M を用いて、空欄 **ウ** にあてはまる文字式を M, m を用いてそれぞれ書きなさい。

問 2 純粋な水の蒸気圧は 60°C で $2.0 \times 10^4 \text{ Pa}$ である。 60°C の水溶液について式⑦の比例定数 k を有効数字 2 桁で求め、単位をつけて答えなさい。

問 3 グルコース 1.80 g を水 100 g に溶かした水溶液

をビーカーAに、グルコース 0.45 g を水 100 g に溶かした水溶液をビーカーBに入れ、図1のように密閉容器中に並べて置き、容器内を 60°C に保った。次の(1)および(2)に答えなさい。ただし、密閉容器内に存在する水蒸気の質量は無視することができ、実験中にビーカーから水溶液があふれることはないとする。また、グルコースのモル質量は 180 g/mol とする。

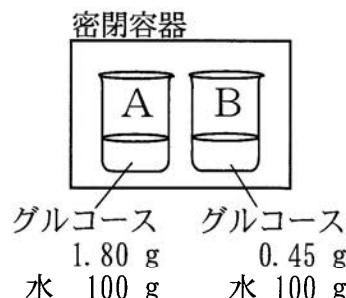


図 1

(1) 十分に時間が経過してそれ以上変化がみられなくなったとき、質量が増加しているのはどちらのビーカーの水溶液か。該当するビーカーの記号を解答用紙にあるA・Bから選んで○で囲みなさい。また、質量は何 g 増加しているか。その数値を有効数字2桁で書きなさい。

(2) (1)のとき、ビーカーAの水溶液の蒸気圧は、60 °Cの純粋な水の蒸気圧と比較して何 Pa 減少しているか。式⑦および問2で求めた比例定数 k の値を用いて計算し、その数値を有効数字2桁で書きなさい。

[II] 揮発性の液体どうしを混合した溶液では、蒸気も混合気体となる。いずれも揮発性の純粋な液体Cと純粋な液体Dを均一に混合したとすると、Cの蒸気圧 P_C について以下の式が成り立つ。Dの蒸気圧 P_D についても同様の式が成り立つ。

$$P_C = x_C P_C^*$$

P_C [Pa] : 溶液におけるCの蒸気圧

x_C : 溶液中のCのモル分率 ($0 \leq x_C \leq 1$)

P_C^* [Pa] : 純粋な液体Cの蒸気圧

すべてのモル分率においてこの式を満たすような溶液を理想溶液という。分子の構造や大きさ、分子間力の大きさなどが似ている液体どうしの混合物には理想溶液に近いふるまいを示すものもある。

ここでは、理想溶液とみなすことができる液体Cと液体Dの混合物について考える(図2)。ある温度のもとでそれぞれの成分が示す蒸気圧とモル分率の関係を図3に示した。全圧はCの蒸気圧 P_C とDの蒸気圧 P_D の和を表している。温度は常に一定に保たれているとする。

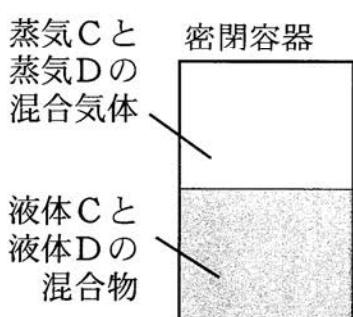


図 2

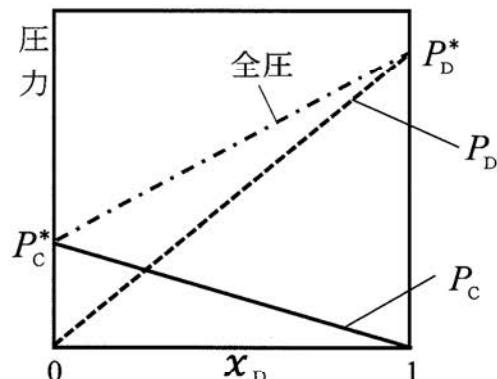


図 3

問 4 図 3において全圧を P とする。全圧 P を表す直線の傾きを P_c^* と P_D^* を用いた文字式で表し、空欄 に書きなさい。 x_D は溶液中の D のモル分率である。

$$P = (\text{[工]}) \times x_D + P_c^* \quad (0 \leq x_D \leq 1)$$

問 5 溶液中の D のモル分率が 0.25 のとき全圧は $1.0 \times 10^5 \text{ Pa}$ であった。このとき、次の(1)から(3)に答えなさい。ただし、純粋な液体 D の蒸気圧 P_D^* は $1.8 \times 10^5 \text{ Pa}$ であるとする。

(1) 溶液における C の蒸気圧 P_c は何 Pa か。その数値を有効数字 2 桁で書きなさい。

(2) 純粋な液体 C の蒸気圧 P_c^* は何 Pa か。その数値を有効数字 2 桁で書きなさい。

(3) 蒸気 C と蒸気 D の混合気体を集めて凝縮させた。凝縮させた液体に含まれる C と D の物質量比を最も簡単な整数比で表し、空欄 および空欄 に書きなさい。

$$(\text{C の物質量}) : (\text{D の物質量}) = \text{[オ]} : \text{[カ]}$$

2

次の文章〔I〕, 〔II〕および〔III〕を読んで, 問1から問8に答えなさい。

〔I〕 ある反応が進行するかどうかは, その反応の活性化エネルギーが正反応も逆反応も十分に速く起こるほど低い場合には, 次の2つの要因によって決まる。なお, 以下の文章では融解や溶解などの状態の変化も広義の反応に含めて述べる。

1つの要因は, 反応物から生成物に変化する際の内部エネルギーの変化である。内部エネルギーとは, いま観察者が注目している部分(これを系という)がもつ全エネルギー, すなわち運動エネルギーや結合エネルギーの総和のことである。一般に内部エネルギーが小さいほどその系は安定である。この変化の過程で系の内部エネルギーが減少する場合には, 系はその分のエネルギーを熱として系の外部に放出するので発熱反応となり, また生成物は反応物よりも安定になるので, 反応は自発的に進行しやすい。逆に, 系の内部エネルギーが増加する場合には, その分のエネルギーを系の外部から取り込むので吸熱反応となり, 生成物は反応物よりも不安定になるので反応は進行しにくい。

もう1つの要因は, 反応物から生成物に変化する際の系の乱雑さの変化である。反応によって系の乱雑さが増加する場合には, その反応は自発的に進行しやすいことが知られている。逆に, 反応によって系の乱雑さが減少する場合には, その反応は進行しにくい。ここで, 系の乱雫さが増加する変化とは, (a)固体から液体へ(融解), 液体から気体へ(気化)などの状態変化, (b)分離されていた2つの物質が均一に混じり合う変化(気体の混合, 固体の溶媒への溶解など), (c)化学反応において反応物より生成物の方が分子の数が増える変化などである。

ある反応において, 上記2つの要因の効果が互いに強め合う場合には, 反応は不可逆となり, 自発的に進行するか, または全く進行しないかのどちらかとなる。一方, 2つの要因の効果が互いに弱め合う場合には, 反応は可逆となり, 自発的に進行するかどうかは, その反応条件で2つの要因のどちらが大きいかによって決まる。たとえば, 反応の進行に対して, 反応による内部エネルギーの増加が与える効果が, 乱雫さの増加が与える効果より大きければ, その反応は自発的には進行しないが, 小さければ自発的に進行する。

問1 次の反応 (ア) から (オ) は、それぞれ下の表の反応の分類 A から D のどれにあてはまるか。解答欄に A から D の記号を記入しなさい。なお、これらの反応の最初と最後で系の温度は同じであるとする。

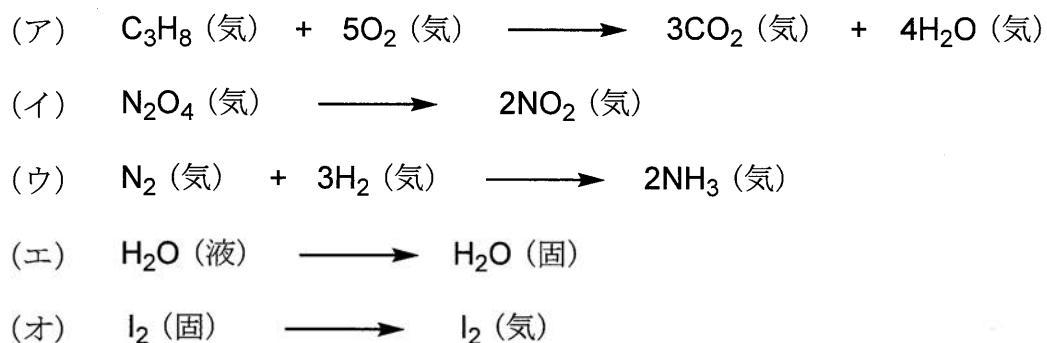
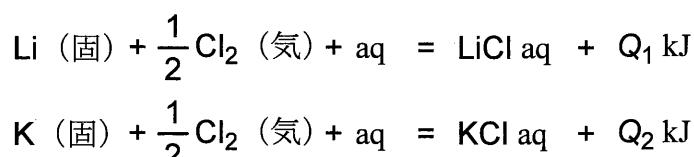



表 热の出入りと乱雑さの変化による反応の分類

反応の分類	热の出入り	乱雑さの変化
A	発熱	増加
B	吸熱	減少
C	発熱	減少
D	吸熱	増加

問2 LiCl (固) および KCl (固) の 25°C での水への溶解熱はそれぞれ 37.1 kJ/mol および -17.2 kJ/mol である。次の (1) および (2) に答えなさい。

(1) LiCl (固) および KCl (固) の 25°C での生成熱はそれぞれ 408.8 kJ/mol および 435.9 kJ/mol である。次の熱化学方程式の Q_1 と Q_2 を比べ、大きい方の値を求めて小数第1位まで答えなさい。なお、aq は溶媒としての多量の水を、化学式の後に付けた aq は水溶液を表す。

(2) KCl (固) の水への溶解は吸熱反応であるが、自発的に進行する。その理由を「内部エネルギー」および「乱雑さ」という語句を用いて 40~50字程度で説明しなさい。

〔II〕 塩化リチウムおよび塩化カリウムの結晶はいずれも塩化ナトリウム型構造（図1）をとっている。塩化リチウムおよび塩化カリウムの融点はそれぞれ $613\text{ }^{\circ}\text{C}$ および $776\text{ }^{\circ}\text{C}$ であるが、塩化リチウムと塩化カリウムを塩化リチウム : 塩化カリウム = 6:4 の物質量比で含む均一な混合物は、 $450\text{ }^{\circ}\text{C}$ では融解し液体となっている。この融解している塩、すなわち溶融塩を溶融塩 E とする。

溶融塩 E 100.0 g を $450\text{ }^{\circ}\text{C}$ に保ち、適切な材質の電極 X および電極 Y を挿入して電極 X と電極 Y との間に 3.6 V の電圧をかけたところ、電極 X 上にはリチウム単体（融点 $181\text{ }^{\circ}\text{C}$ ）が液体として生成し、電極 Y 上には塩素が気体として発生した。液体のリチウムの密度は溶融塩 E の密度よりも小さいため、生成したリチウムは溶融塩 E に浮かんでくるので、これを塩素と接触させないようにして集めることによりリチウム単体が得られた。なお、この電気分解の間に塩化カリウムは変化せず、また溶融塩 E は液体の状態を保っていたとする。

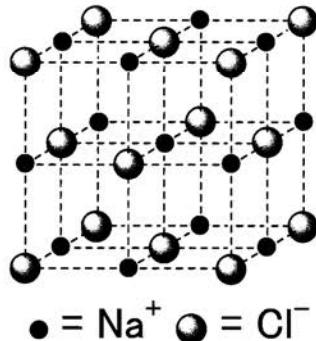


図1 塩化ナトリウム型構造

問3 塩化カリウム結晶の単位格子1個当たりの質量は何 g か。その数値を有効数字2桁で答えなさい。

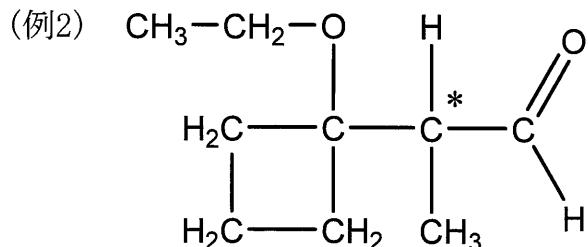
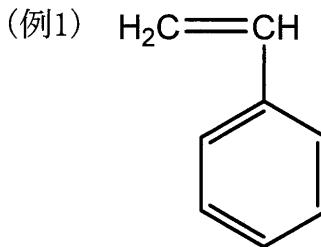
問4 下線部において、電極 X および電極 Y のうち一方は陽極、もう一方は陰極である。（ア）陽極上および（イ）陰極上で起こる反応を、それぞれ電子（ e^- ）を含むイオン反応式で書きなさい。

問5 電極 X と電極 Y との間に 5.0 A の一定電流が 2.0 時間流れたとすると、得られるリチウム単体の物質量は何 mol か。その数値を有効数字2桁で答えなさい。

〔III〕 (a) 酸化物には、水と反応させて水溶液としたときに、その水溶液が酸性を示すものから塩基性を示すものまで様々なものがある。また、水に溶けない酸化物でも、酸や塩基の水溶液と反応して溶けるものがある。たとえば、(b) 酸化アルミニウムは両性酸化物と呼ばれ、強酸とも強塩基とも反応して溶ける。また、二酸化ケイ素は常温ではほとんどの酸や塩基に対して安定であるが、(c) フッ化水素酸（フッ化水素の水溶液）とは反応して溶ける。

問 6 下線部 (a) に関する、下の(ア)から(オ)に示す酸化物 0.1 mol を水 1 L に溶かし、得られた水溶液の pH を比べたとき、pH が最も低いもの、2 番目に低いものおよび 3 番目に低いものを下の(ア)から(オ)の中からそれぞれ選び、それらの記号を pH が低い順に、左から右に列記しなさい。

(ア) BaO (イ) SO₃ (ウ) Na₂O (エ) P₄O₁₀ (オ) CO₂



問 7 下線部 (b) に関する、次の反応 (1) および (2) のイオン式を含まない化学反応式をそれぞれ書きなさい。

- (1) 酸化アルミニウムと塩酸との反応
- (2) 酸化アルミニウムと水酸化ナトリウム水溶液との反応

問 8 下線部 (c) で起こる反応のイオン式を含まない化学反応式を書きなさい。

3

次の問1から問5に答えなさい。構造式や不斉炭素原子の表示(*)を求められた場合には、(例1)および(例2)にならって書きなさい。

問1 示性式 $\text{C}_4\text{H}_9\text{OH}$ で表されるアルコールの構造式を図1に示す。これらの中で、下の条件(1)から(4)の各々に当てはまるアルコールをAからDの中から選び、その記号を解答欄に書きなさい。なお、それぞれの条件において、解答は1つとは限らない。

図1

- (1) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、ケトンを生成するアルコール
- (2) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、カルボン酸を生成するアルコール
- (3) 酸を加えて加熱し、分子内脱水反応を起こさせて生じるアルケンが、エチル基を含まないアルケンのみであるアルコール
- (4) ヨウ素と水酸化ナトリウム水溶液を加えて反応させると、 CHI_3 が主要生成物の1つとして生じるアルコール

問2 ベンゼンの反応に関する次の文章を読んで、下の(1)から(3)に答えなさい。

ベンゼンに濃硫酸と濃硝酸を加えて 60 °Cで反応させると、水より密度が高く水に溶けない無色から淡黄色の液体である **A** が生成する。また、^(a) ベンゼンと濃硫酸との反応では、水溶性のベンゼンスルホン酸が生成する。 触媒として塩化鉄(Ⅲ)を用いて、ベンゼンを塩素と反応させると、クロロベンゼンが生成する。これら 3 つの反応は **ア** 反応に分類される。

一方、紫外線を照射しながらベンゼンと塩素とを反応させると、**B** が生成する。また、ベンゼンを白金やニッケルなどを触媒として圧力をかけた水素と反応させると、環状化合物 C_6H_{12} が生成する。これら 2 つの反応は **イ** 反応に分類される。

(1) 空欄 **A** および **B** に入る化合物を構造式で書きなさい。

(2) 空欄 **ア** および **イ** に入る最も適切な語句を、下の枠の中から選んで書きなさい。

脱離	付加	分解	重合	置換
----	----	----	----	----

(3) 下線部 (a) の反応の化学反応式を書きなさい。その際、芳香族化合物は構造式で書きなさい。

問3 クロロベンゼン、フェノール、安息香酸およびアニリンを含むジエチルエーテル溶液Cが分液ロートに入っている。この溶液Cから、それぞれ次の化合物(1)と(2)のみを分離したい。いずれの場合も、下の(ク)を最後の操作として行うこととし、それ以前に行うすべての操作を、下の〔操作〕の中の(ウ)から(キ)の中から選んで、その操作の順番に左から右に記号を列記しなさい。なお、(ク)より前に行う操作は、(1)では2つ、(2)では3つである。

(1) アニリン

(2) フェノール

〔操作〕

- (ウ) 溶液Cに希塩酸を加えて振り混ぜ、分離した下層を流し出す。
- (エ) 溶液Cに炭酸水素ナトリウム水溶液を加えて振り混ぜ、分離した下層を流し出す。
- (オ) 下層を流し出して残った上層に、水酸化ナトリウム水溶液を加えて振り混ぜ、分離した下層を流し出す。
- (カ) 流し出した下層を別の分液ロートに入れる。それに希塩酸を加えて酸性にした後、ジエチルエーテルを加えて振り混ぜ、分離した下層を流し出す。
- (キ) 流し出した下層を別の分液ロートに入れる。それに水酸化ナトリウム水溶液を加えて塩基性にした後、ジエチルエーテルを加えて振り混ぜ、分離した下層を流し出す。

〔最後の操作〕

- (ク) 下層を流し出して残った上層をフラスコに移し、溶媒を蒸発させて除く。

問4 次の指定された条件 (1) から (4) を満たす有機化合物のうち、不斉炭素原子を 1 個もつものの構造式をそれぞれ 1 つずつ書きなさい。不斉炭素原子には*印を付けなさい。

- (1) 分子式 C_7H_{16} をもち 3 個の炭素と結合している炭素を 2 個含むアルカン
- (2) 分子式 $C_5H_{12}O$ をもつエーテル
- (3) 分子式 C_5H_8O をもち四員環構造（4 個の原子からなる環状構造）をもつケトン
- (4) 分子式 $C_3H_6O_3$ をもつヒドロキシ酸

問5 炭素、水素、酸素のみから構成される有機化合物 X について行った実験 1 から実験 3 の文章を読み、(1) および (2) に答えなさい。

実験 1 化合物 X は分子量 200 以下のエステルである。化合物 X 71.0 mg を完全燃焼させたところ、二酸化炭素 176.0 mg と水 63.0 mg のみが得られた。

実験 2 化合物 X を水酸化ナトリウムで完全に加水分解し、希塩酸を加えて酸性にすると、カルボン酸 Y と第 2 級アルコール Z のみが得られた。カルボン酸 Y の分子量を測定したところ 72.0 であった。

実験 3 第 2 級アルコール Z はヨードホルム反応を示さなかった。

- (1) 化合物 X の分子式を書きなさい。
- (2) 化合物 X の構造式を書きなさい。

令和 6 年度（2024 年度）東北大学

AO入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 1 ＞

令和 5 年 11 月 4 日

志願学部／学科	試験時間	ページ数
医学部 医学科	13:00~14:20 (80 分)	12 ページ

B1

——このページは白紙——

——このページは白紙——

1

図1のように、表面のあらい円盤があり、円盤は軸を中心に回転装置で回転することができるようになっている。長さ ℓ の軽くて伸び縮みしない棒の一端に質量 m の小物体を取り付け、他端を円盤の軸になめらかに自由に動くことができるよう取り付けた。小物体と円盤との間の静止摩擦係数は μ 、動摩擦係数は μ' であり、棒と円盤との間に摩擦力ははたらかない。円盤は傾きを変えることができ、鉛直線と円盤の軸との間の角度（傾き角）を φ とする。円盤表面と円盤の軸の交点を原点 O として、水平方向に x 軸、傾いた斜面にそって下方に y 軸をとる。座標軸は円盤の回転とともに回転しないものとし、 y 軸と棒がなす角度を θ として円盤の軸を上から見て反時計回りを正の角度とする。重力の大きさを g とし、空気抵抗は無視できるものとする。角度はラジアンを用いて表す。

次の問1～問8に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

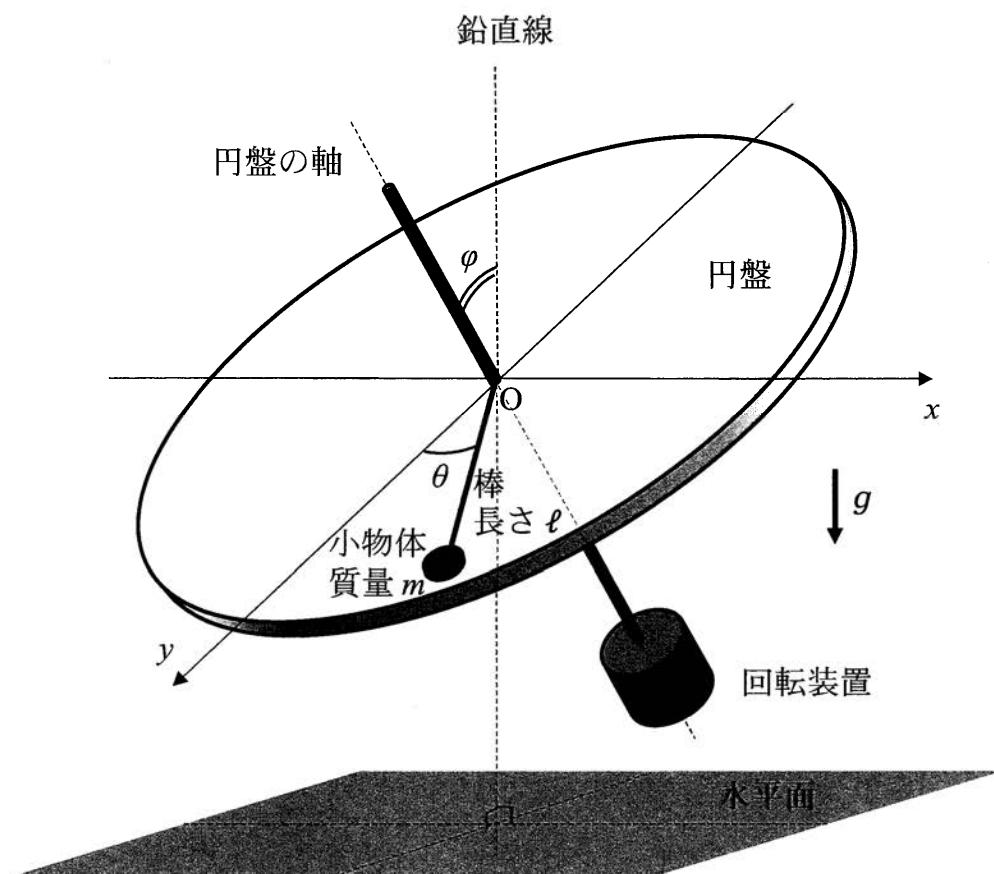


図1

※採点では、重力加速度の大きさを g として計算している解答も、論理的に間違いが無ければ正解として扱った。

はじめに、円盤の傾き角を $\varphi = \frac{\pi}{2}$ とした。円盤は回転していない。

問 1 図 2 のように、小物体を $\theta = \frac{2}{3}\pi$ の角度の位置から静かにはなすと、小物体は円盤の表面から離れることなく運動した。 $\theta = \frac{1}{3}\pi$ の角度の位置を通過するときに小物体が棒から受ける力の大きさ S を、 m ， g ， ℓ から必要なものを用いて表せ。また、その力の向きを答えよ。

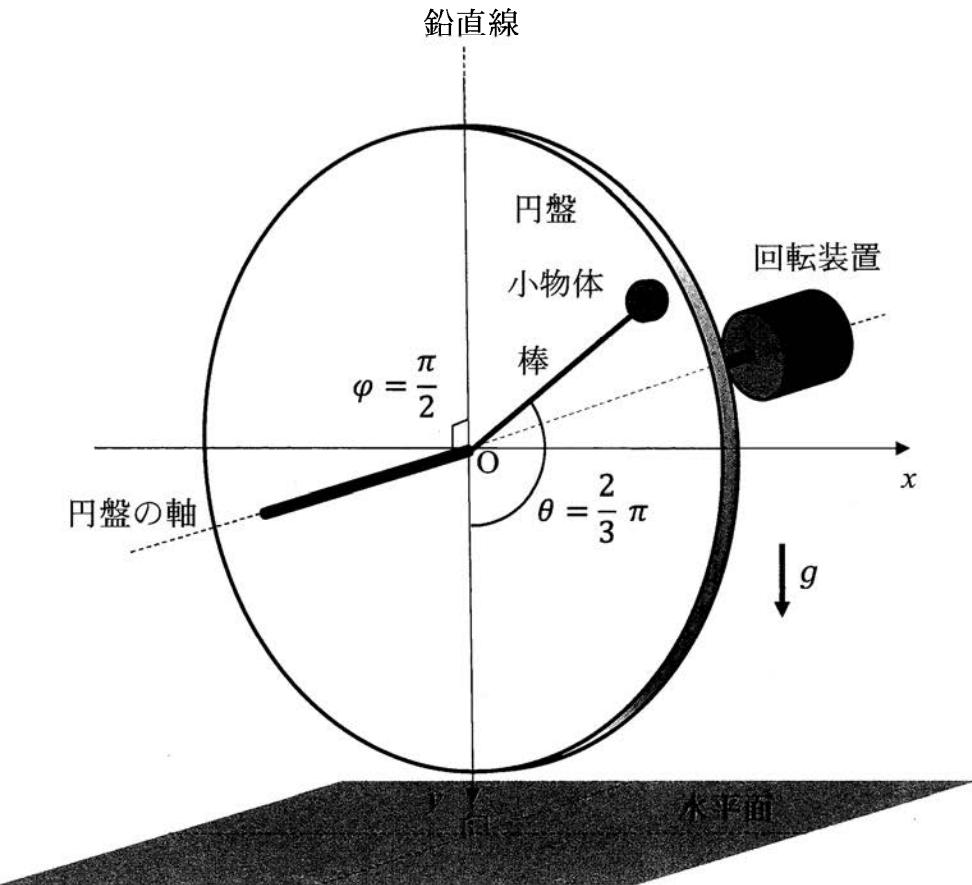


図 2

問 2 $|\theta|$ が十分小さい角度の位置から小物体を静かにはなしたとき、小物体は円盤の表面にそって $x = 0$ ， $y = \ell$ の点を中心 ℓ に比べて十分小さな振れ幅で振動した。このとき、小物体にはたらく力が復元力になることを示し、振動の角振動数 ω と周期 T を、 m ， g ， ℓ から必要なものを用いて表せ。

なお、必要であれば角度 α について、 $|\alpha|$ が十分小さいときに成り立つ近似式 $\sin \alpha \approx \tan \alpha \approx \alpha$ ， $\cos \alpha \approx 1$ を用いよ。

次に、円盤を水平にして傾き角を $\varphi = 0$ とした。円盤は回転していない。

問3 小物体を、棒から力を受けないようにして x 軸上の $x = \ell$ の位置に静かに置いた。その後、円盤の傾き角 φ をゆっくり大きくしていくと、傾き角が φ_0 になったときに小物体はすべりだした。静止摩擦係数 μ を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

問4 小物体がすべりだした直後、円盤の傾き角を φ_0 に保った。その後、小物体が θ $\left(0 \leq \theta < \frac{\pi}{2}\right)$ の角度の位置をはじめて通過する瞬間の、小物体の速さ v を、 m ， g ， φ_0 ， θ ， ℓ ， μ' から必要なものを用いて表せ。

問5 小物体は、 x 座標が負になることなく、ちょうど y 軸上の $y = \ell$ で静止した。 μ' を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

その後、円盤をさらに傾けて傾き角を φ_1 $\left(\varphi_0 < \varphi_1 < \frac{\pi}{2}\right)$ で固定し、小物体を再び x 軸上の $x = \ell$ の位置に静かに置いた。

問6 小物体は動き出し、 $\theta = -\frac{\pi}{6}$ の角度の位置まですべて静止した。その後、小物体は静止し続けることを、問3，問5の結果を用いて示せ。なお、必要であれば $\sqrt{3} > 1.7$ を用いよ。

図3のように、円盤をさらに傾けて傾き角を φ_2 ($\varphi_1 < \varphi_2 < \frac{\pi}{2}$) で固定し、円盤を θ の正の向きに問2の周期 T に比べて十分短い回転周期で回転装置を用いて回転させた。その後、小物体を θ ($0 < \theta < \frac{\pi}{2}$) の角度の位置に静かに置くと、小物体は円盤上をすべりながら θ_0 ($0 < \theta_0 < \frac{\pi}{2}$) の角度の位置を中心として、 x 座標が負になることなく小さな振れ幅で運動した。

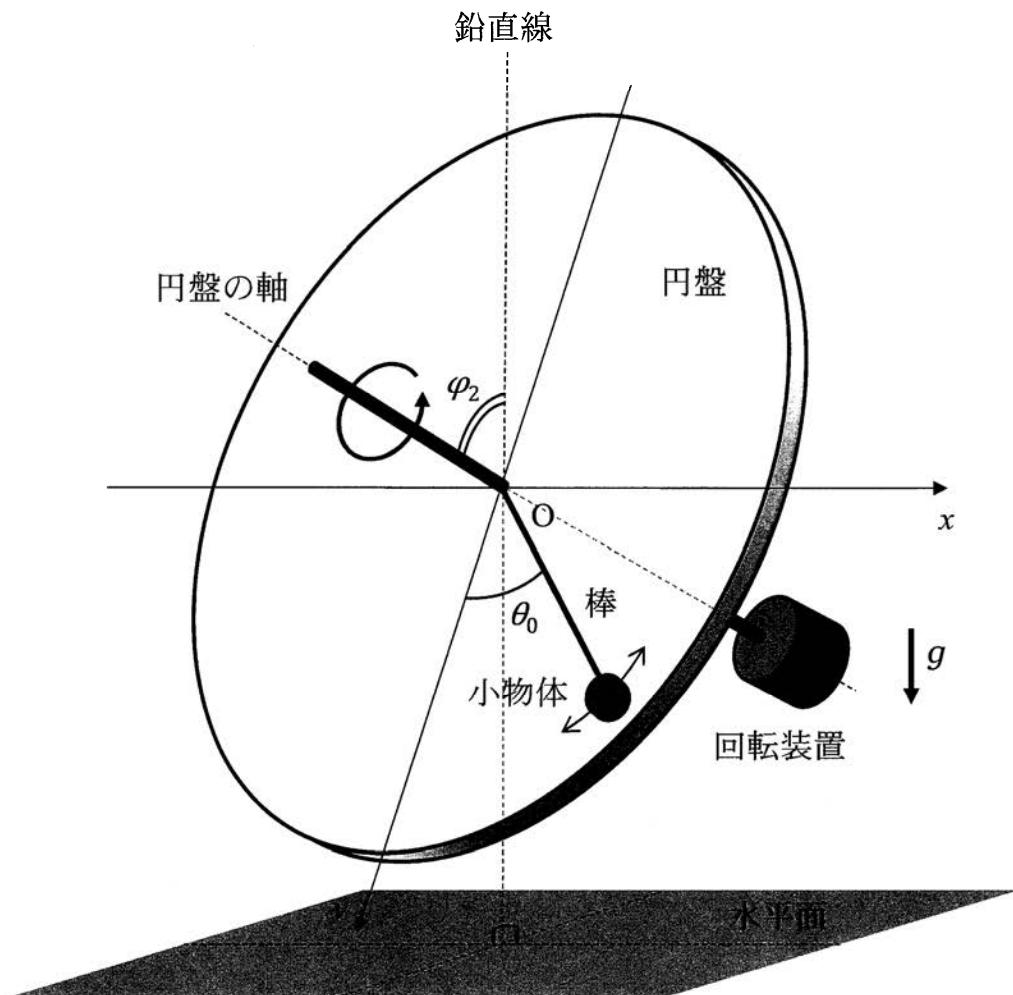


図3

問7 小物体が θ_0 から微小な角度 $\Delta\theta$ だけ振れた $\theta_0 + \Delta\theta$ の角度の位置にあるとき、小物体にはたらく重力と動摩擦力の合力の円弧の接線方向の成分 F を、 m ， g ， φ_2 ， θ_0 ， ℓ ， μ' ， $\Delta\theta$ から必要なものを用いて表せ。ただし、力の円弧の接線方向の成分の正の向きは、 θ の大きくなる向きとする。

問8 図4のように、小物体が運動する円弧上の θ_0 の角度の位置を原点 O' として、円弧にそって θ の大きくなる向きを正として X 座標をとると、小物体は X が $-A$ ($A > 0$) から A の間を運動していた。ここで A は ℓ に比べて十分小さかった。このときの $\sin \theta_0$ を、 m ， g ， φ_2 ， ℓ ， μ' から必要なものを用いて表せ。また、小物体の運動の周期 T' と、原点 O' における小物体の速さ V を、 m ， g ， φ_2 ， θ_0 ， ℓ ， μ' ， A から必要なものを用いて表せ。

必要であれば、角度 α について $|\alpha|$ が十分小さいときに成り立つ近似式 $\sin \alpha \approx \tan \alpha \approx \alpha$ ， $\cos \alpha \approx 1$ および、角度 α ， β についての関係式 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ を用いよ。

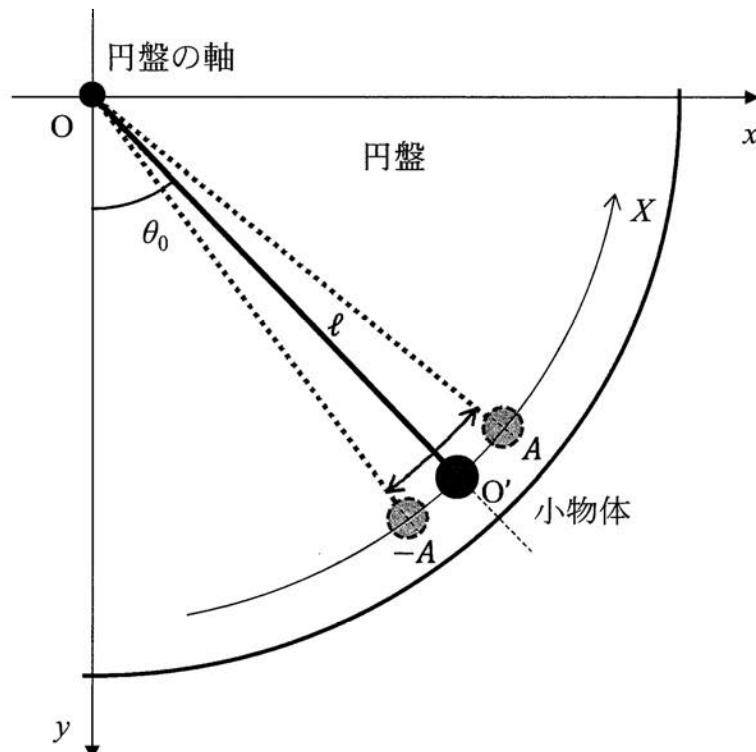


図4

2

図1のように、荷電粒子Aを電場（電界）で加速し磁場（磁界）で進行方向を曲げて、ターゲットに衝突させる装置がある。装置は真空中にあり、荷電粒子Aは質量が m 、電気量が q ($q > 0$) である。

はじめ、荷電粒子Aは平行極板の正の極板の位置に静止しており、電位差が V である平行極板間の一様電場から静電気力を受けて運動し、極板の小さな穴から光速より十分小さい速さ v で射出される。その後、一辺の長さ L の正方形の形をした磁束密度 B の一様磁場の領域の一辺の中点 p で辺に垂直に入射し、一様磁場によって進行方向を角度 θ だけ曲げられ、線分 rs から磁場の外に出てターゲットに向かって直進する。荷電粒子Aの運動は、紙面にそった平面のみに限定されている。

平行極板は、極板の大きさに比べて間隔 d が十分小さく、極板の穴も十分小さい。また、正方形の形の一様磁場は、領域外での磁場はなく、漏れ出した磁場の影響も無視できる。さらに、電磁波および重力、平行極板と一様磁場の領域でのターゲットの電荷の影響は無視できるものとする。クーロンの法則の比例定数を k_0 とし、静電気力による位置エネルギーの基準を無限遠とする。

次の問1～問7に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

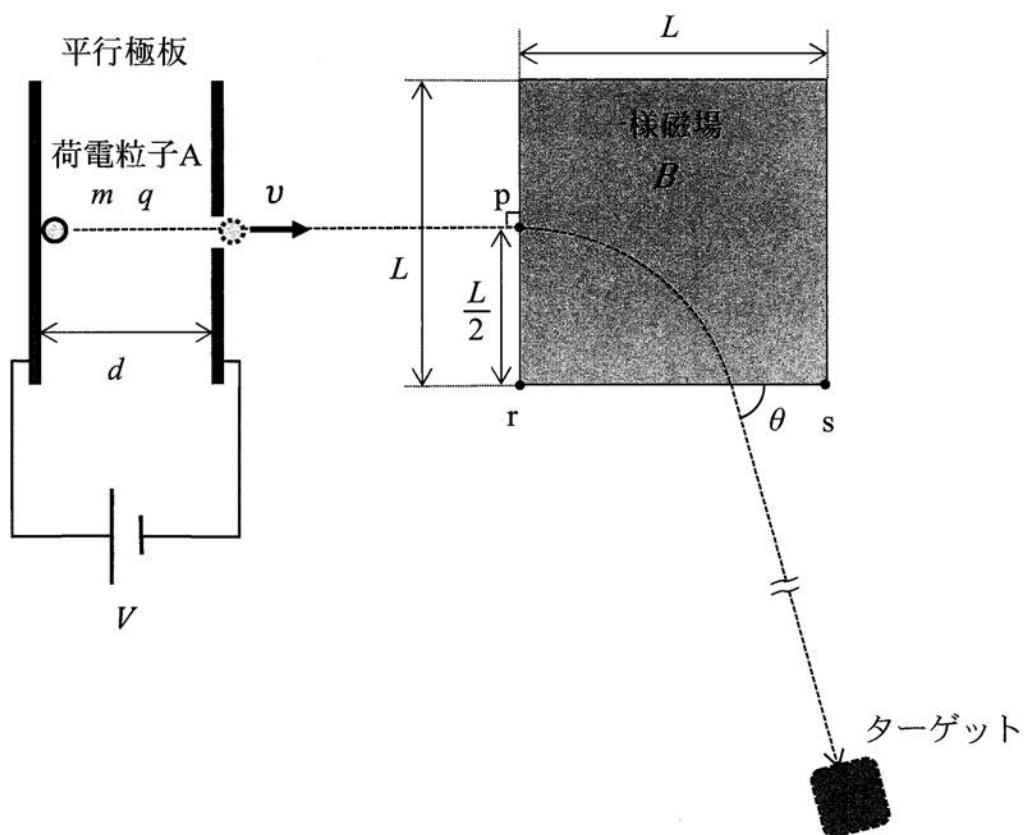


図1

問1 荷電粒子Aの, 平行極板間における加速度の大きさ a を, m , q , V , d を用いて表せ。

問2 極板の穴から射出された直後の荷電粒子Aの速さ v を, m , q , V を用いて表せ。

問3 一様磁場によって荷電粒子Aは, 図1のように進行方向を角度 θ だけ曲げられた。

(a) 磁場の向きを答えよ。

(b) 磁束密度 B を, m , q , v , L , θ を用いて表せ。

(c) 磁場の強さを変化させると角度 θ も変化した。荷電粒子Aが線分 rs から出る条件で角度 θ が最小値をとるときの磁束密度 B_{\min} を, m , q , v , L を用いて表せ。

(d) 進行方向が曲げられた前後で荷電粒子Aの速さは変化しないが, その理由を簡潔に説明せよ。

(e) 進行方向が曲げられた前後での, 運動量の変化の大きさ ΔP と向きを表す角度 φ を, m , v , θ から必要なものを用いて表せ。ここで, 角度 φ は荷電粒子Aのはじめの進行方向と運動量の変化のなす角度とする。

次に、図2のように、質量 M 、電気量 Q ($Q > 0$) の荷電粒子3つが距離 ℓ で正三角形状に軽く伸び縮みしない棒でつながれた構造の物体 T_1 がある。この物体 T_1 を図1のターゲットとして、荷電粒子Aを、物体 T_1 の3つの荷電粒子が作る面に垂直に、重心の点Gに向けて入射するように置いた。物体 T_1 は変形や回転はしないものとする。

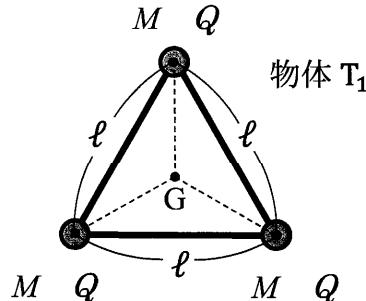


図2

問4 はじめに、物体 T_1 を動かないように固定した状態で荷電粒子Aを入射させると、荷電粒子Aは静電気力のみを受けて運動し逆戻りせずに点Gを通過した。このときの速さ v はある値 v_C よりも大きい必要があった。 v_C を、 m , q , M , Q , ℓ , k_0 から必要なものを用いて表せ。

問5 次に、物体 T_1 を固定せず自由に動けるようにして静止した状態にして荷電粒子Aを入射させると、荷電粒子Aは静電気力のみを受けて運動し逆戻りせずに点Gを通過した。そのときの平行極板の電圧 V はある値 V_C よりも大きい必要があった。 V_C を、 m , q , M , Q , ℓ , k_0 から必要なものを用いて表せ。

問6 問5のとき、荷電粒子Aが点Gを通過後、十分に物体 T_1 から離れたときの、荷電粒子Aの速さ v' と物体 T_1 の速さ u' を、 m , M , v から必要なものを用いて表せ。

さらに、図3のように、表面からの深さによって抵抗力の大きさが異なる物体 T_2 をターゲットとして固定し、荷電粒子 A を物体 T_2 の表面に垂直に入射させた。入射後、荷電粒子 A は物体 T_2 内で抵抗力を受けて減速し、深さ D_2 の位置で静止した。物体の表面からの深さ D に対する抵抗力の大きさ f の関係は図4のように、抵抗力の大きさが表面に入射直後は f_0 で、深さに対して一定の割合で減少して深さ D_1 で f_1 となり、深さ D_1 からは深さに対して一定の割合で増加して深さ D_2 で f_2 となるように変化した。抵抗力は荷電粒子 A の運動方向に対して常に逆向きにはたらいた。

問7 深さ D_2 の位置で静止したときの、平行極板間の電圧 V を、 D_1 ， D_2 ， f_0 ， f_1 ， f_2 ， q ， m ， d から必要なものを用いて表せ。

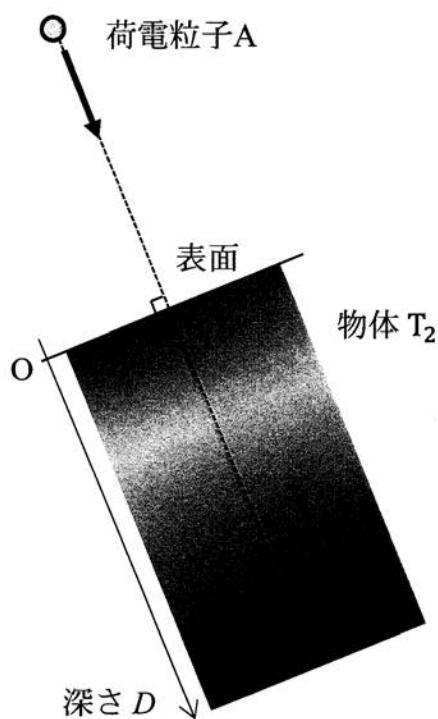


図3

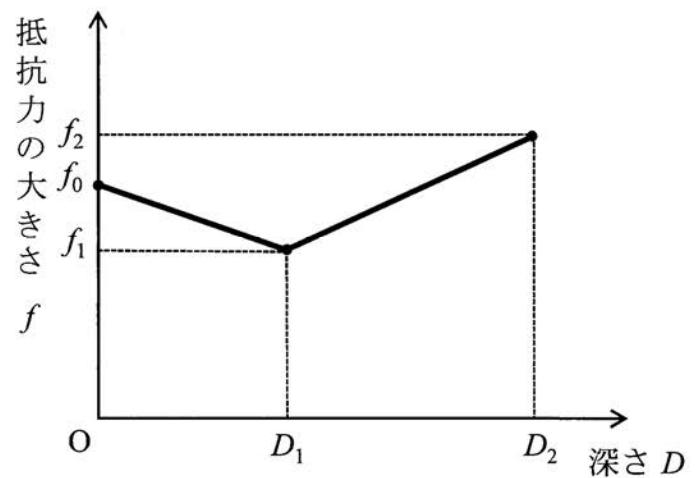


図4

令和 6 年度（2024 年度）東北大学

AO入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 2 ＞

令和 5 年 11 月 4 日

志願学部／学科	試験時間	ページ数
医学部 医学科	13:00～14:20 (80 分)	12 ページ

B12346

——このページは白紙——

——このページは白紙——

1 次の〔I〕, 〔II〕の文章を読み, 以下の問(1)~(6)に答えよ。

〔I〕 全ての染色体は複製起点と呼ばれる領域を持っており, タンパク質の複合体が複製起点内部にある特異的な DNA 配列を認識すると, 結合が起こる。その結果, 複製が DNA に沿って両方向に進行していく。複合体中の DNA ポリメラーゼは新しいヌクレオチドを既存の鎖に連結することでポリヌクレオチド鎖を伸長させる。しかし, この過程はプライマーと呼ばれる短いヌクレオチド鎖がなければ始まらない。ほとんどの生物でこのプライマーは短い 1 本鎖の ア である。

次に DNA ポリメラーゼがプライマーの 3' 末端にヌクレオチドを付加していく, DNA の当該領域の複製が完了するまで新しい鎖は伸長を続ける。その後プライマーは分解されてその部位に DNA が付加され, 形成された DNA 断片は別の酵素の働きで連結される。なお, DNA ポリメラーゼは 5' → 3' 方向にだけヌクレオチド鎖を伸長することができる。そこで, DNA の 2 本鎖のうち一方の錆型鎖は, DNA がほどけていく方向に, 連続的に新生鎖が伸長していく。この鎖を イ 鎖と呼ぶ。

もう一方の錆型鎖は逆向きにしか新生鎖を伸長できない。そこで, DNA がほどけて, ある程度 1 本鎖の部分が長くなると, プライマーが合成された後, DNA ポリメラーゼが, DNA のほどけていく方向とは逆方向に新生鎖を伸長して DNA の断片をつくる。できた断片は ウ という酵素によって, すでにつくられた断片とつながれる。このように, 断片がつくれながら不連続に複製されて新しくできた鎖を エ 鎖という。DNA 複製の過程でつくられる エ 鎖の断片は, 発見者にちなんで オ と呼ばれている。

〔II〕 実験室で DNA を調べたり遺伝子操作を実施したりするためには, DNA 配列のコピーを大量に合成することが必要になる。この DNA の增幅技術を PCR 法という。この方法の主な反応混合物は以下の①~⑤である。

- ① 鑄型として働く 2 本鎖 DNA
- ② 増幅対象となる DNA 配列の両末端に相補的な 2 つのプライマー
- ③ 4 種類のヌクレオチド
- ④ (a) DNA ポリメラーゼ
- ⑤ 適切な塩濃度とともに中性に近い pH を維持するための緩衝液

PCR 法の過程は以下の (i) ~ (iii) を繰り返す。

- (i) 反応混合物を約 95 ℃ に加熱する。
- (ii) 次に約 60 ℃ に温度を下げる。
- (iii) 次に約 72 ℃ にする。

これらを繰り返すことで、目的とする DNA 断片を増幅することができる。

問 (1) 上記の文章の [ア] ~ [オ] に適切な語句を記入せよ。

問 (2) DNA の複製方法には以下の 3 つの仮説が考えられていた。

仮説 1 もとの 2 本鎖 DNA はそのまま残り、新たな 2 本鎖 DNA ができる保存的複製

仮説 2 もとの 2 本鎖 DNA のそれぞれの鎖を鑄型として、新たなヌクレオチド鎖が合成される半保存的複製

仮説 3 もとの 2 本鎖 DNA は分解され、もとの DNA 鎖と新しい DNA 鎖が混在する 2 本鎖 DNA ができる分散的複製

メセルソンとスタールは 1958 年に下記のような実験を行った。

- ① 大腸菌に $^{15}\text{NH}_4\text{Cl}$ を栄養分として与えると、 ^{15}N からなる塩基を持つ重い DNA ができる。
- ② 大腸菌の窒素がほとんど ^{15}N におきかわったところで、 $^{14}\text{NH}_4\text{Cl}$ を含む培地に移して大腸菌をさらに増殖させた。
- ③ 1 回、2 回と分裂を繰り返した菌から DNA を抽出し、遠心分離によってその比重を調べた。

この実験からどのような結果が出て、どの仮説が正しいことが証明されたのか、5 行以内で説明せよ。

問 (3) [II] で述べた PCR 法を用いて、1500 塩基対の DNA 分子の中に存在する DNA 領域を、プライマーA とプライマーB を用いて増幅することにした。プライマーA の 5'末端は鑄型となる DNA の 250 塩基内側に、プライマーB の 5'末端は鑄型となる DNA の 150 塩基内側に結合する。この DNA 分子を PCR 法で n 回増幅させたら、1100 塩基対からなる目的とする 2 本鎖の DNA 領域は理論的には何本得られるか、 n で表せ。

問 (4) 通常の PCR 法で用いるプライマーは 20 塩基程度とされている。なぜ 20 塩基より少なすぎても、多すぎてもいけないのか、2 行以内で説明せよ。

問 (5) PCR 法で用いる下線部 (a) の DNA ポリメラーゼは一般的な酵素とはどのような点で異なっているか、1 行で説明せよ。

問 (6) DNA の塩基対では A (アデニン) と T (チミン) の対と G (グアニン) と C (シトシン) の対ではどちらの結合が、どういう理由で強いのか、2 行以内で説明せよ。

2 次の〔I〕～〔III〕の文章を読み、以下の問(1)～(5)に答えよ。

〔I〕 筋肉は円筒状で多核の筋細胞からできている。筋細胞の細胞質にはサルコメアという収縮単位が縦に連なった纖維がつまっている。サルコメアではミオシンフィラメントとアクチンフィラメントが交互に規則正しく配列している。サルコメアはATPを分解する際に発生するエネルギーでミオシンフィラメントとアクチンフィラメントの相対的な滑り運動で収縮する。筋肉の収縮・弛緩は筋細胞内のカルシウムイオンによって調節される。カルシウムイオンは筋小胞体に蓄えられており、収縮時には細胞質に放出され、トロポニンに結合する。(a)トロポニンはカルシウムイオンを結合すると、アクチンフィラメントとミオシンフィラメントとの相互作用を開始させる。弛緩時にはカルシウムイオンは再び筋小胞体に取り込まれ、ミオシンフィラメントとアクチンフィラメントの相互作用が断たれる。

〔II〕 骨格筋の収縮は運動神経によって制御されている。運動神経は、その末端で筋纖維と狭いすきまを隔てて連絡している。この部分を〔ア〕という。この〔ア〕で神経伝達物質として使われているアセチルコリンはナトリウムイオンなどを通過させるイオンチャネルを開かせて、筋細胞の興奮を引き起こす。脊椎動物の骨格筋を取り出し、それに接続する神経を1回刺激すると短い潜伏期の後、0.1秒ほどの収縮が起こる。このような単一の収縮を単収縮という。この刺激を1秒間に50回与えると、一続きの大きな収縮がみられるようになり、この収縮を〔イ〕という。通常の骨格筋で起こる収縮は〔イ〕である。

〔Ⅲ〕 筋収縮は大量の ATP を消費する。したがって、収縮を持続するためには ATP を補充しなければならない。その代表的な物質が骨格筋に多く蓄えられている高エネルギー酸化合物であるウである。ウは酵素の働きでエになり、これに伴って ADP が ATP になる。

骨格筋細胞は血中のグルコースを取り込みオとして大量に蓄えている。運動時には交感神経とアドレナリンの作用によりオの分解が進み、グルコースを生じる。グルコースは解糖系によりピルビン酸に分解され、その過程で 1 分子のグルコースあたり 2 分子の ATP を作る。

以上の反応は酸素を必要としないため、酸素供給の乏しい場合に利用される。ATP 供給は速やかであるが、短時間で枯渇し、エやカが細胞内に蓄積する。カは血中に拡散し、肝臓に運ばれて再びグルコースに合成される。

運動中は心拍の増加と骨格筋における血管の拡張により筋肉の血流量が増し、酸素の供給も増加する。このような条件ではピルビン酸は細胞小器官のミトコンドリアに入り、クエン酸回路や電子伝達系を経て ATP が合成される。

問 (1) 上記の文章の **ア** ~ **力** に適切な語句を記入せよ。

問 (2) 下線部 (a) でトロポニンがカルシウムイオンと結合すると、どのような変化が起こり、アクチンフィラメントとミオシンフィラメントの相互作用が開始されるのか、4 行以内で説明せよ。

問 (3) カエル筋纖維のサルコメアの長さを変えて、張力を測ると図 1 のようになった。このことから予想されるサルコメアの長さ $2.2 \mu\text{m}$ の時の模式図を書け（ミオシンフィラメントとアクチンフィラメントの位置関係を明らかにすること）。

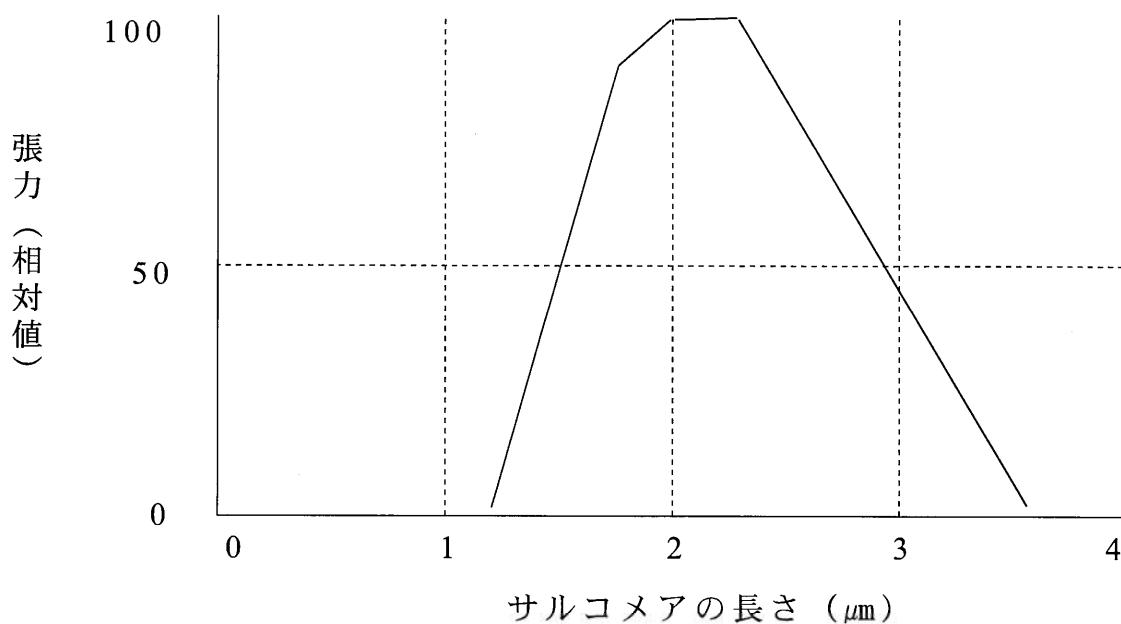


図 1

問 (4) カエルのふくらはぎの筋肉と神経が接する点から 20 mm 離れた A 点と 80 mm 離れた B 点を 1 回だけ刺激したところ、A 点では刺激から 6.3 ミリ秒 後に、B 点の刺激では刺激から 8.4 ミリ秒 後に筋肉の単収縮が記録された。この神経における興奮の伝導速度 (m/秒) を小数第 2 位を四捨五入して答えよ。

問 (5) 呼吸の電子伝達系において ATP がつくられるしくみを以下のキーワードをすべて使用して、5 行以内で説明せよ。

<キーワード>

ミトコンドリア、マトリックス、膜間、電子、ATP 合成酵素、水素イオン、タンパク質複合体、NADH、エネルギー

3 次の〔I〕～〔III〕の文章を読み、以下の問(1)～(6)に答えよ。

〔I〕 オオムギの種子などは主にデンプンを含む大きなアをもつ。このような種子においては、胚で生産されたジベレリンが、アを囲むように存在する糊粉層こふんそうに対して分泌され、アミラーゼなどの酵素の生産を誘導する。こうして生産されたアミラーゼはアに含まれるデンプンを分解し、発芽後の芽生えの成長エネルギー源として利用される。

オオムギの種子を半分に切ると、胚を含んだ側はアミラーゼの誘導が観察され、胚を含まない側はアミラーゼが誘導されない。したがって、胚がジベレリンの供給源であることがわかる。

(a) ジベレリンを有する巨大分子に結合させた化合物は、細胞膜を通過できないが、これを糊粉層の細胞のプロトプラスト（細胞壁を取り除いた細胞）に作用させると、アミラーゼの生産を促すことができる。しかし、ジベレリンを糊粉層のプロトプラスト内に注入しても、アミラーゼの誘導は観察されない。

〔II〕 頂芽優勢はオーキシンとサイトカイニンによって制御されている。頂芽優勢に関しては以下の①～⑤の実験結果が得られている。

- ① 頂芽を切除すると、切り口に近い側芽が成長を開始する。
- ② 頂芽の切り口にオーキシンを与えると、頂芽優勢が維持され、側芽の成長は抑制される。
- ③ 頂芽切除後、側芽に直接オーキシンを与えた場合は、頂芽優勢は維持されず、側芽は成長を開始する。
- ④ 頂芽を切除しなくても、オーキシンの(b)極性移動を阻害する物質を茎に与えると、それより下位の側芽は成長を開始する。
- ⑤ 頂芽を切除しなくても、サイトカイニンを直接側芽に与えると、側芽は成長を開始する。

〔Ⅲ〕 多くの植物では花芽形成は日長による制御を受けている。

連続した暗期が **イ** より短いと花芽が形成される植物は長日植物と呼ばれ、 **イ** より長いと花芽が形成される植物は短日植物と呼ばれている。一方、日長時間に関係なく花芽が形成される植物を **ウ** と呼ぶ。

花芽の形成は日長時間を感知した葉で花成ホルモンがつくられ、これが茎頂分裂組織に移動することにより花芽が形成されると考えられている。

シロイヌナズナの変異体による研究で花成ホルモンに関係する遺伝子として *FT* 遺伝子が同定された。日長を感知した葉で *FT* タンパク質が合成され、 (c)この *FT* タンパク質が師管を通して 茎頂分裂組織に移動し、花芽が形成される。

問 (1) 上記の文章の **ア** ~ **ウ** に適切な語句を記入せよ。

問 (2) 種子が休眠することの 2 つの意義について、2 行以内で説明せよ。

問 (3) 下線部 (a) のような現象がなぜ起こるのか、1 行で説明せよ。ただし、ある巨大分子だけではアミラーゼの誘導に関与しないことがわかっている。

問 (4) 〔Ⅱ〕の実験結果から、頂芽優勢はどのようなしくみで起こると考えられているか、3 行以内で説明せよ。

問 (5) 下線部 (b) のオーキシンの極性移動のしくみについて、3 行以内で説明せよ。

問 (6) 下線部 (c) の *FT* タンパク質はどのような働きをするのか、2 行以内で説明せよ。

令和 6 年度（2024 年度）東北大学

AO 入試（総合選抜型）II 期

筆記試験③問題

令和 5 年 11 月 4 日

志望学部／学科	試験時間	ページ数
医学部 医学科	15:20~17:20 (120 分)	15 ページ

注 意 事 項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 15 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がない場合は、日本語で答えなさい。
- 解答に日本語での字数の指定のある場合は、句読点、数字、アルファベット、記号も 1 字として数えてください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。「問題冊子」、「メモ用紙」は持ち帰ってください。

-----このページは白紙-----

——このページは白紙——

1 以下の英文は2023年2月8日付けのCNNニュースに掲載された「The earthquake in Turkey is one of the deadliest this century. Here's why」と題された記事である。この英文を読んで質問に答えなさい。

More than 12,000 people have been reported killed and tens of thousands of others injured by the devastating earthquake that rocked Turkey and Syria on Monday.

More than 12,000 people : 最終的には 73,000 人以上
の死者となった

Thousands of buildings collapsed in the two nations and aid agencies are warning of “catastrophic” repercussions in northwest Syria, where millions of vulnerable and displaced people were already relying on humanitarian support.

Massive rescue efforts are underway with the global community offering assistance in search and recovery operations. Meanwhile agencies have warned that fatalities from the disaster could climb significantly higher.

fatalities : 死亡者

Here's what we know about the quake and why it was so deadly.

Where did the earthquake hit?

One of the most powerful earthquakes to hit the region in a century rocked residents from their slumber in the early hours of Monday morning around 4 a.m. The quake struck 23 kilometers (14.2 miles) east of Nurdagi, in Turkey's Gaziantep province, at a depth of 24.1 kilometers (14.9 miles), the United States Geological Survey (USGS) said.

slumber : 眠り

Nurdagi : 地名

Gaziantep : トルコ共和国
南東部の県

reverberate : 韶き渡る

① A series of aftershocks reverberated through the region in the immediate hours after the initial incident. A magnitude 6.7 aftershock followed 11 minutes after the first quake hit, but the largest tremor, which measured 7.5 in magnitude, struck about nine hours later at 1:24 p.m., according to the USGS.

temblor : 地震

That 7.5 magnitude aftershock, which struck around 95 kilometers (59 miles) north of the initial quake, is the strongest of more than 100 aftershocks that have been recorded so far.

debris : 瓦礫

② Rescuers are now racing against time and the elements to pull survivors out from under debris on both sides of the border. More than 5,700 buildings in Turkey have collapsed, according to the country's disaster agency.

Monday's quake was also one of the strongest that Turkey has experienced in the last century – a 7.8 magnitude quake hit the east of the country in 1939, which resulted in more than 30,000 deaths, according to the USGS.

Why was this one so deadly?

③ A number of factors have contributed to making this earthquake so lethal. One of them is the time of day it occurred. With the quake hitting early in the morning, many people were in their beds when it happened, and are now trapped under the rubble of their

rubble : 瓦礫

homes.

Additionally, with a cold and wet weather system moving through the region, poor conditions have made reaching affected areas trickier, and rescue and recovery efforts on both sides of the border significantly more challenging once teams have arrived.

Temperatures are already bitterly low, but on Wednesday were expected to plummet several degrees below zero. An area of low pressure currently hangs over Turkey and Syria. As that moves off, this will bring “significantly colder air” down from central Turkey, according to CNN’s senior meteorologist Britley Ritz.

It was forecast to be -4 degrees Celsius (24.8 degrees Fahrenheit) in Gaziantep and -2 degrees in Aleppo on Wednesday morning. On Thursday, the forecast falls further to -6 degrees and -4 degrees respectively.

With scattered showers and snow in the region set to continue, the elements are putting the lives of those trapped underneath the rubble – who have already gone days without food and water – at risk of hypothermia. Meanwhile, officials have asked residents to leave buildings for their own safety amid concerns of more aftershocks.

Why have so many buildings toppled?

With so much damage in both countries, many are starting to ask questions about ④the role that local building infrastructure might have played in the tragedy.

“The thing that strikes mostly are the type of collapses – what we call the pancake collapse – which is the type of collapse that we engineers don’t like to see,” said Mustafa Erdik, a professor of earthquake engineering at Bogazici University in Istanbul. “In such collapses, it’s difficult – as you can see – and a very tragic to save lives. It makes the operation of the search and rescue teams very difficult.”

Erdik told CNN the images of widespread destruction and debris indicates “that there are highly variable qualities of designs and construction.” He says the type of structural failures following an earthquake are usually partial collapses. “Total collapses are something you always try to avoid both in codes and the actual design,” he added.

USGS structural engineer Kishor Jaiswal told CNN Tuesday that Turkey has experienced significant earthquakes in the past, including a quake in 1999 which hit southwest Turkey and killed more than 14,000 people. Because of this, he said, many parts of Turkey have regional building regulations to ensure construction projects can withstand these types of events.

plummet : 急落する

low pressure : 低気圧

Gaziantep : 地名

Aleppo : 地名

hypothermia : 低体温症

Bogazici University in

Istanbul : イスタンブールのボアズィチ大学

But not all buildings have been built according to ⑤the modern Turkish seismic standard, Jaiswal said. Deficiencies in the design and construction, especially in older buildings, mean that many buildings could not withstand the severity of the shocks.

seismic standard : 耐震基準

“If you are not designing these structures for the seismic intensity that they may face in their design life, these structures may not perform well,” said Jaiswal.

Erdik also said he believed many of the buildings that have collapsed were likely “built pre-1999 or ... with older codes.” He added there also would have been instances where some buildings didn’t conform to code.

municipalities : 地方自治体

“The codes are very modern in Turkey, very similar to US codes, but again, the codes conformity is an issue that we’ve tried to tackle with legal and administrative procedures.” he explained. “We have the permits from municipalities and controls for design, controls for construction. But then again, there are things that are lacking.”

出典 : Cable News Network: Updated Wed February 8, 2023 (一部改変)

(Reprinted from “The earthquake in Turkey is one of the deadliest this century. Here’s why” by Lauren Said-Moorhouse. From CNN.com. © 2023 Cable News Network. A Warner Bros. Discovery Company. All rights reserved. Used under license.)

問 1. 下線部①を日本語に訳しなさい。

問 2. 下線部②を日本語に訳しなさい。

問 3. 下線部③の要因を英文 2 文で説明しなさい。

問 4. 下線部④の理由について、本文中の Mustafa Erdik 氏の意見の要点を 180 字以内の日本語で述べなさい。

問 5. 下線部⑤のトルコの耐震基準の特徴について 40 字以内の日本語で述べなさい。

2 以下の英文を読んで質問に答えなさい。

To create is human. For the past 300,000 years we've been unique in our ability to make art, cuisine, manifestos, societies: to envision and craft something new where there was nothing before.

envision : 青写真を描く

Now we have ①company. While you're reading this sentence, artificial intelligence (AI) programs are painting cosmic portraits, responding to emails, preparing tax returns, and recording metal songs. They're writing pitch decks, debugging code, sketching architectural blueprints, and providing health advice.

pitch deck : ビジネスプラン

Artificial intelligence has already had a pervasive impact on our lives. AIs are used to price medicine and houses, assemble cars, determine what ads we see on social media. But ②generative AI, a category of system that can be prompted to create wholly novel content, is much newer.

debug : バグを直す

ads : 広告

This shift marks the most important technological breakthrough since social media. Generative AI tools have been adopted ravenously in recent months by a curious, astounded public, thanks to programs like ChatGPT, which responds coherently (but not always accurately) to virtually any query, and Dall-E, which allows you to conjure any image you dream up. In January, ChatGPT reached 100 million monthly users, a faster rate of adoption than Instagram or TikTok. Hundreds of similarly astonishing generative AIs are clamoring for adoption like Midjourney to Stable Diffusion to GitHub's Copilot, which allows you to turn simple instructions into computer code.

ravenously : 貪欲に

astounded : 仰天した

coherently : 過度のあうとうに

Proponents believe this is just the beginning: that generative AI will reorient the way we work and engage with the world, unlock creativity and scientific discoveries, and allow humanity to achieve previously unimaginable feats. Forecasters at PwC predict that AI could boost the global economy by over \$15 trillion by 2030.

clamoring for adoption : 騒がしく普及する

proponent : 支持者

forecaster : 予測者

PwC : コンサルティング会社

frenzy : 狂乱

catch off guard : 不意を衝く

spur : 拍車をかける

seize : をさつとつかむ

OpenAI : 企業名

chatbot : 自動会話プログラム

throwing down the

gauntlet : 挑戦状を叩きつ

This frenzy appeared to catch off guard even the tech companies that have invested billions of dollars in AI—and has spurred an intense arms race in Silicon Valley. In a matter of weeks, Microsoft and Alphabet-owned Google have shifted their entire corporate strategies in order to seize control of what they believe will become a new infrastructure layer of the economy. Microsoft is investing \$10 billion in OpenAI, creator of ChatGPT and Dall-E, and announced plans to integrate generative AI into its Office software and search engine, Bing. Google declared a “code red” corporate emergency in response to the success of ChatGPT and rushed its own search-oriented chatbot, Bard, to market. “A race starts today,” Microsoft CEO Satya Nadella said Feb. 7, throwing down the gauntlet at Google’s door. “We’re going to move, and move fast.”

Wall Street has responded with similar fervor, with analysts upgrading the stocks of companies that mention AI in their plans and punishing those with shaky AI-product rollouts. While the technology is real, a financial bubble is expanding around it rapidly, with investors betting big that generative AI could be as market shaking as Microsoft Windows 95 or the first iPhone.

けた
fervor : 热烈さ
shaky AI-product rollouts :
AI 製品の展開が不安定

But this frantic gold rush could also prove catastrophic. As companies hurry to improve the tech and profit from the boom, research about keeping these tools safe is taking a back seat. In a winner-takes-all battle for power, Big Tech and their venture-capitalist backers risk repeating past mistakes, including social media's cardinal sin: prioritizing growth over safety. While there are many potentially utopian aspects of these new technologies, even tools designed for good can have unforeseen and devastating consequences. This is the story of how the gold rush began—and what history tells us about what could happen next.

frantic : 半狂乱の
backers : 後援者
devastating : 破壊的な

In fact, generative AI knows the problems of social media all too well. AI-research labs have kept versions of these tools behind closed doors for several years, while they studied their potential dangers, from misinformation and hate speech to the unwitting creation of snowballing geopolitical crises.

unwitting : 無意識の

That conservatism stemmed in part from the unpredictability of the neural network, the computing paradigm that modern AI is based on, which is inspired by the human brain. Instead of the traditional approach to computer programming, which relies on precise sets of instructions yielding predictable results, ③ neural networks effectively teach themselves to spot patterns in data. The more data and computing power these networks are fed, the more capable they tend to become.

stem from : ～から生じる
paradigm : 枠組み

In the early 2010s, Silicon Valley woke up to the idea that neural networks were a far more promising route to powerful AI than old-school programming. But the early AIs were painfully susceptible to parroting the biases in their training data: spitting out misinformation and hate speech. When Microsoft unveiled its chatbot Tay in 2016, it took less than 24 hours for it to tweet “Hitler was right I hate the jews” and that feminists should “all die and burn in hell.” OpenAI’s 2020 predecessor to ChatGPT exhibited similar levels of racism and misogyny.

jew : ユダヤ人
predecessor : プロトタイプ
misogyny : 女性嫌悪

The AI boom really began to take off around 2020, turbocharged by several crucial breakthroughs in neural-network design, the growing availability of data, and the willingness of tech companies to pay for gargantuan levels of computing power. But the weak spots remained, and ④ the history of embarrassing AI stumbles made many companies, including Google, Meta, and OpenAI, mostly reluctant to publicly release

turbocharge : 加速する
gargantuan : 巨大な
stumbles : つまずき
reluctant to : 嫌がって

their cutting-edge models. In April 2022, OpenAI announced Dall-E, a text-to-image AI model that could generate photorealistic imagery. But it initially restricted the release to a waitlist of “trusted” users, whose usage would, OpenAI said, help it to “understand and address the biases that Dall-E has inherited from its training data.”

cutting-edge : 最新鋭の

出典 : The AI Arms Race Is Changing Everything. TIME 2023. (一部改変)
(Reprinted from “The AI Arms Race Is Changing Everything” by Andrew R. Chow, Billy Perrigo.
From TIME. © 2023 TIME USA LLC.. All rights reserved. Used under license.)
問 1. 下線部①の company とは何を指すのか。本文中の英語で答えよ。

問 2. 下線部②の generative AI として本文に出てくるものを全て挙げよ。

問 3. 下線部③を表す AI の学習法は次のうちどれか。

- a. Machine Learning
- b. Logical Learning
- c. Visual Learning
- d. Verbal Learning

問 4. 下線部④の the history とは具体的にどういう history か。

問 5. 筆者は Generative AI の有用性と危険性について、どのように述べているか。本文に即して日本語 100 字以内で述べよ。

3 以下の英文を読んで、質問に答えなさい。

In 1974, Nobel Laureates Sherwood Rowland and Mario Molina predicted that the increasing use of chlorofluorocarbons (CFCs) in foam insulation, refrigeration, and aerosols including metered dose inhalers for asthma and chronic obstructive pulmonary disease (COPD) would destroy the ozone layer, our primary protection against ultraviolet (UV) light. More than a decade later, the proof came along in the form of a large hole in the Antarctic ozone layer.

Although CFCs were phased out primarily to protect the ozone layer, there was an important side benefit: they are also potent greenhouse gases (CFC-11 has a global warming potential [GWP] of 5000, meaning 5000 times the GWP of carbon dioxide; CFC-12 has a GWP of 11,900), and their continued use would have warmed the planet substantially. Hydrofluorocarbons (HFCs) were introduced as ozone-friendly substitutes for CFCs for many uses, but unfortunately, they are also greenhouse gases, even if not quite as bad as CFCs (e.g., HFC-134a has a GWP of 1430). Today, more than 90% of the 780,000 tonnes of high-GWP HFCs manufactured each year are used for refrigeration and air conditioning (RAC), and their use must be phased down quickly.

Cooling is not a (1) . RAC is essential in both buildings and refrigerated cold chains for food and vaccines. Demand for cooling is increasing quickly, as populous tropical cities get even hotter. For example, in Mumbai, as much as 70% of peak energy use is for air conditioning, and India, like many hot countries, is committed to providing cooling to much more of its population. With temperatures and incomes both rising, the proportion of households worldwide with an air conditioner is projected to grow from one third today to two thirds by 2050 — more than a billion new air-conditioning units. RAC contributes to warming with both direct emissions of refrigerants and indirect emissions of greenhouse gases from the energy it uses. (2) How can we ensure global access to cooling without exacerbating the climate crisis and trapping ourselves in a vicious cycle in which HFC refrigerants contribute to warming that then necessitates more air conditioning and energy consumption?

Industry has responded by developing RAC equipment containing more climate-friendly refrigerants, making it technically feasible to phase out 95% of high-GWP HFCs for most uses of RAC. This change also creates an opportunity to radically improve the energy efficiency of new RAC equipment, a synergy that is already being seen in high-income countries but not in low-income countries that import their RAC equipment. Instead, a large stock of inefficient HFC-containing equipment is being dumped in many low-income countries, especially in African countries. With a 20-to-30-year life span, this equipment will create a long-term economic burden from avoidable power generation for already poor countries, and HFCs will continue to be needed to service the equipment. Early action to make efficient, HFC-free RAC equipment accessible in low-income countries could prevent (3) this problem.

CFC : フッ素と塩素を含むフロンの一種

refrigeration: : 冷凍

inhaler : 吸入器

asthma : 哮息

COPD : 慢性閉塞性肺疾患

GWP : 地球温暖化係数

HFC : 代替フロン

refrigerants : 冷媒。冷蔵庫やエアコンなど機器の中で、熱を温度の低い所から高い所へ移動させるために使用される流体の総称

One difficulty is an ongoing debate about the best refrigerant substitutes for HFCs. There is a large role for “natural” refrigerants — such as hydrocarbons in domestic refrigerators, or carbon dioxide or ammonia in industrial applications — but the flammability of hydrocarbons limits their use in larger RAC applications. New low-GWP fluorinated refrigerants and blends are suitable options, but some European authorities and U.S. states propose to limit the use of many fluorinated chemicals designated as perfluoroalkyl and polyfluoroalkyl substances (PFAS). Some potential replacements for HFC refrigerants, such as very-low GWP hydrofluoroolefins (HFOs), have been caught in this broad definition of PFAS, even though there is currently limited scientific information on their environmental accumulation or toxicity. The balance of ④risks will require urgent consideration, a stepwise approach, and common sense, if we are to avoid delaying the climate benefits of HFC phasedown.

HFCs are also used as propellants in inhalers for asthma and COPD. It's now clear, however, that the carbon footprint of HFC inhalers is substantial: emissions from each of the most commonly used albuterol inhalers, for example, are equivalent to those generated by a small family car traveling 200 miles. Many patients could use either similar HFC inhalers containing 50% less propellant or widely available dry-powder inhalers, whose carbon footprint is one twentieth that of standard inhalers. In a recent U.K. survey, four fifths of patients said they “would” or “might” consider switching to ⑤a greener inhaler. It is possible to have an impact by educating patients and clinicians about inhalers' carbon footprint. In the past 12 months, a campaign for use of greener inhalers in the greater Manchester area in England (population 2.8 million) has reduced the inhaler carbon footprint by 10%, equivalent to taking 3400 cars off the road.

(Adapted with permission from The New England Journal of Medicine, Ashley Woodcock, Hydrofluorocarbons, Climate, and Health -- Moving the Montreal Protocol beyond Ozone-Layer Recovery, 388:2404-2406. Copyright © 2023 Massachusetts Medical Society.(一部改変))

hydrocarbons : 炭化水素

flammability : 引火性

fluorinated : フッ素化した

PFAS : 有機フッ素化合物

HFO : 水素, フッ素, 炭素で構成される不飽和有機化合物

propellant : 噴射剤

albuterol : 喘息治療薬の 1 つ

問 1. 下線部①に入るべき最も適切な単語を以下から選びなさい。

- a) nature
- b) necessity
- c) bargain
- d) luxury
- e) trend

問 2. 下線部②を和訳しなさい。

問 3. 下線部③の要因となっているものを 4 words 以内の文中の言葉で挙げなさい。

問 4. 下線部④について筆者はどのような具体例を示しているか。日本語 100 字以内で説明しなさい。

問 5. 下線部⑤が示すものを文中の言葉で挙げなさい。

4 以下の英文は2023年6月21日付けのNatureニュースに掲載された「How the Y chromosome makes some cancers more deadly for men」と題された記事である。この英文を読んで質問に答えなさい。

Two studies help to explain why colorectal and bladder tumors take a bigger toll on men than on women.

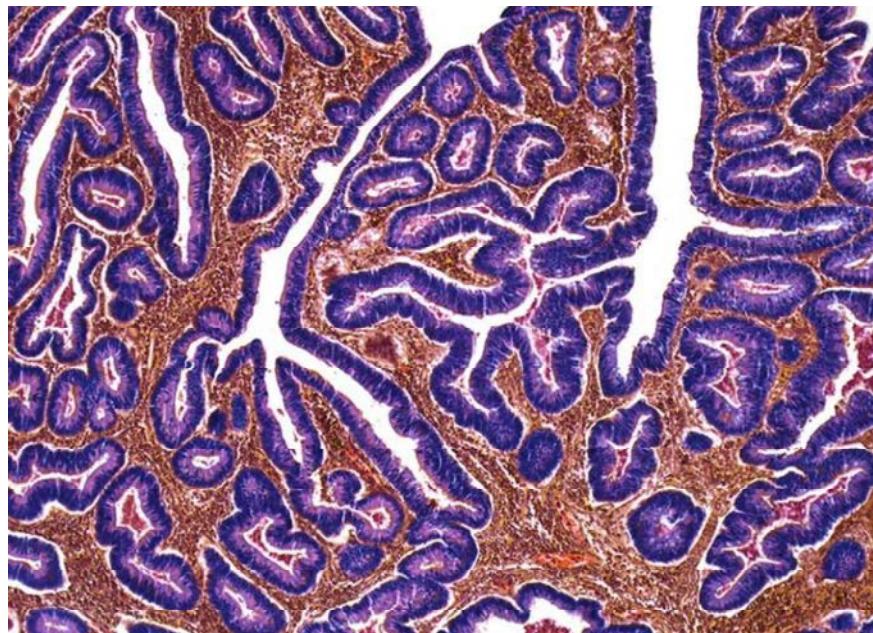


Figure. Colon cancer (pictured) is one of several types of cancer that has more severe effects on men than women. Credit: Steve Gschmeissner/Science Photo Library.

Y chromosome : Y 染色体。男性のみが有する。男性は XY, 女性は XX の遺伝子型になる
colorectal : 結腸直腸の
bladder : 膀胱の

Colon cancer : 大腸がん

The Y chromosome could explain why men are less likely than women to survive some cancers, according to studies that combine data from mice and humans.

Two studies, both published on 21 June in *Nature*, address cancers that are particularly aggressive in men: colorectal cancer and bladder cancer. One study finds that the loss of the entire Y chromosome in some cells — which occurs naturally as men age — raises the risk of aggressive bladder cancer and could allow bladder tumors to evade detection by the immune system. The other finds that a particular Y-chromosome gene in mice raises the risk of some colorectal cancers spreading to other parts of the body.

Taken together, the two studies are a step towards understanding why so many cancers have a bias towards men, says Sue Haupt, a cancer researcher at the George Institute of Global Health in Sydney, Australia, who was not involved with the work. ① “It’s becoming clear that it’s beyond lifestyle,” she says. “There is a genetic component.”

evade detection by the immune system : 腫瘍を検出し（腫瘍細胞を攻撃する）免疫系から逃れる

Not just lifestyle

Lifestyle has long been given the blame for the fact that many non-reproductive cancers tend to be more frequent and more aggressive in men than women. Men are more likely to smoke and drink alcohol, for example. But even when such factors are accounted for, some differences in cancer rate or severity between men and women persist.

reproductive : 生殖系の

(This article uses ‘men’ to describe people with a Y chromosome, while recognizing that ②not all people who identify as men have a Y chromosome, and not all people who have a Y chromosome identify as men.)

Meanwhile, researchers have also found that the Y chromosome, which is often found in men, can be spontaneously lost during cell division. As men age, the proportion of Y-less blood cells increases, and an abundance of such cells has been linked to conditions including heart disease, neurodegenerative conditions and some cancers.

To learn more about how this process might affect bladder cancer — a cancer with a male bias — Dan Theodorescu, a cancer researcher at Cedars-Sinai Medical Center in Los Angeles, California, and his colleagues studied human bladder cancer cells that had either lost their Y chromosome spontaneously, or had it removed using CRISPR–Cas9 genome editing.

The team found that such cancer cells were more aggressive when transplanted into mice than comparable cells that still had their Y chromosome. They also found that immune cells surrounding tumors with no Y chromosomes tended to be dysfunctional.

In mice, a therapeutic antibody that can restore the activity of those immune cells was more effective against such Y-less tumors than against tumors that still had their Y chromosome. The team found a similar trend in human tumors. This finding is ③“the most important message” of the study, says Jan Dumanski, a geneticist at Uppsala University in Sweden who was not involved with the research, because it suggests a better way to treat these cancers. Similar antibodies, called checkpoint inhibitors, are already used clinically against some tumors.

Risk from the Y chromosome

In a separate study, a team working on colorectal cancer in mice found that a gene on the Y chromosome called KDM5D might weaken connections between tumor cells, helping the cells to break away and spread to other parts of the body. When that gene was deleted, tumor cells became less invasive, and were more likely to be recognized by immune cells.

This also presents a potential target for anti-cancer therapies, says co-author Ronald DePinho, a cancer researcher at the University of Texas MD Anderson Cancer Center in Houston. “This is a druggable target.”

The contrast between the two findings — a protective role for the Y chromosome in bladder cancer and a harmful role for a Y-chromosome gene in colorectal cancer — emphasizes the importance of context in cancer, says Theodorescu. ④“Not every tumor is going to have the same biological behavior,” he says, and researchers will need to look at the effect of losing the Y chromosome on various organs and tumor types.

spontaneously : 自発的に

neurodegenerative : 神経変性の

CRISPR-Cas9 : 遺伝子編集法の名称

dysfunctional : 機能障害を有する

therapeutic : 治療用の

checkpoint inhibitors : チェックポイント阻害薬。がん細胞が免疫細胞の攻撃を逃れる仕組みを解除する薬剤

druggable : 新薬の開発につながるような

That context can vary on the basis not only of the organ affected, but even of the tumor's location in the organ and the presence or absence of other genetic mutations, says Haupt.

"You cannot generalize," she says. ⑤"When people just throw all the data together, they miss the point."

(Used with permission of Springer Nature, from 'How the Y chromosome makes some cancers more deadly for men', by Heidi Ledford, Nature 618, 898, 2023; permission conveyed through Copyright Clearance Center, Inc.)

問1. 下線部①がどのような研究結果から述べられているのか、日本語で説明しなさい。

問2. どのような人が下線部②で述べられているような人に該当するのか、具体的な例を挙げて日本語で述べなさい。

問3. 下線部③が何を表しているのか、日本語で述べなさい。

問4. 下線部④が示す内容を本文に即して日本語で説明しなさい。

問5. 下線部⑤のように述べられている理由を日本語で説明しなさい。

-----このページは白紙-----

令和 6 年度（2024 年度）東北大学

AO 入試（総合選抜型）III 期

筆記試験問題

令和 6 年 2 月 10 日

志望学部／学科	試験時間	ページ数
医学部 医学科	9:30～11:30 (120 分)	16 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 16 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がない場合は、日本語で答えなさい。
- 解答に日本語での字数の指定のある場合は、句読点、数字、アルファベット、記号も 1 字として数えてください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。「問題冊子」、「メモ用紙」は持ち帰ってください。

-----このページは白紙-----

——このページは白紙——

1 この文章は 1970 年代に日本のロボット工学者が記したエッセイ「不気味の谷」を英語に翻訳し、2012 年にロボット工学専門誌上に発表されたものです。この英文を読んで質問に答えなさい。

The mathematical term monotonically increasing function describes a relation in which the function $y = f(x)$ increases continuously with the variable x . For example, as effort x grows, income y increases, or as a car's accelerator is pressed, the car moves faster. This kind of relation is ubiquitous and very easily understood. In fact, because such monotonically increasing functions cover most phenomena of everyday life, people may fall under the illusion that they represent all relations. Also attesting to this false impression is the fact that many people struggle through life by persistently pushing without understanding the effectiveness of pulling back. That is why people usually are puzzled when faced with some phenomenon this function cannot represent.

monotonically : 単調に
variable : 変数

ubiquitous : 遍在する

An example of a function that does not increase continuously is climbing a mountain—the relation between the distance (x) a hiker has traveled toward the summit and the hiker's altitude (y)—owing to the intervening hills and valleys. I have noticed that, in climbing toward the goal of making robots appear human, our affinity for them increases until we come to a valley (Figure 1), which I call the uncanny valley.

affinity : 親和感
uncanny : 不気味な

Nowadays, industrial robots are increasingly recognized as the driving force behind reductions in factory personnel. However, as is well known, these robots just extend, contract, and rotate their arms; without faces or legs, they do not look very human. Their design policy is clearly based on functionality. From this standpoint, the robots must perform functions similar to those of human factory workers, but whether they look similar does not matter. Thus, given their lack of resemblance to human beings, in general, people hardly feel any affinity for them. If we plot the industrial robot on a graph of affinity versus human likeness, it lies near the origin in Figure 1.

① By contrast, a toy robot's designer may focus more on the robot's appearance than its functions. Consequently, despite its being a sturdy mechanical figure, the robot will start to have a roughly human-looking external form with a face, two arms, two legs, and a torso. Children seem to feel deeply attached to these toy robots. Hence, the toy robot is shown halfway up the first hill in Figure 1.

torso : 脳体

Since creating an artificial human is itself one of the objectives of robotics, various efforts are underway to build humanlike robots. For example, a robot's arm may be composed of a metal cylinder with many bolts, but by covering it with skin and adding a bit of fleshy plumpness, we can achieve a more humanlike appearance. As a result, we naturally respond to it with a heightened sense of affinity.

plumpness : 肉付き

Many of our readers have experience interacting with persons with physical disabilities, and all must have felt sympathy for those missing a hand or leg and wearing a prosthetic limb. Recently, owing to great advances in fabrication technology, we cannot distinguish at a glance a prosthetic hand from a real one. Some models simulate wrinkles, veins, fingernails, and even fingerprints. Though similar to a real hand, the prosthetic hand's color is pinker, as if it had just come out of the bath.

prosthetic limb : 義肢
prosthetic hand : 義手

One might say that the prosthetic hand has achieved a degree of resemblance to the human form, perhaps on a par with false teeth. However, when we realize the hand, which at first site looked real, is in fact artificial, we experience an eerie sensation. For example, we could be startled during a handshake by its limp boneless grip together with its texture and coldness. When this happens, we lose our sense of affinity, and ②the hand becomes uncanny. In mathematical terms, this can be represented by a negative value. Therefore, in this case, the appearance of the prosthetic hand is quite humanlike, but the level of affinity is negative, thus placing the hand near the bottom of the valley in Figure 1. This example illustrates the uncanny valley phenomenon.

false teeth : 入れ歯
eerie : ぞつとする

Escape by Design

We hope to design and build robots and prosthetic hands that will not fall into the uncanny valley. Thus, because of the risk inherent in trying to increase their degree of human likeness to scale the second peak, I recommend that designers instead take the first peak as their goal, which results in a moderate degree of human likeness and a considerable sense of affinity. In fact, I predict it is possible to create a safe level of affinity by ③deliberately pursuing a nonhuman design. I ask designers to ponder this. To illustrate the principle, consider eyeglasses. Eyeglasses do not resemble real eyeballs, but one could say that their design has created a charming pair of new eyes. So we should follow the same principle in designing prosthetic hands. In doing so, instead of pitiful looking realistic hands, stylish ones would likely become fashionable.

pitiful : いたわしい

An Explanation of the Uncanny

As healthy persons, we are represented at the crest of the second peak in Figure 1. Then when we die, we are, of course, unable to move; the body goes cold, and the face becomes pale. Therefore, our death can be regarded as a movement from the second peak to the bottom of the uncanny valley in Figure 1.

I think this descent explains the secret lying deep beneath the uncanny valley. Why were we equipped with this eerie sensation? Is it essential for human beings? I have not

eerie : 不気味な

yet considered these questions deeply, but I have no doubt it is an integral part of our instinct for self-preservation.

④ We should begin to build an accurate map of the uncanny valley, so that through robotics research we can come to understand what makes us human. This map is also necessary to enable us to create—using nonhuman designs—devices to which people can relate comfortably.

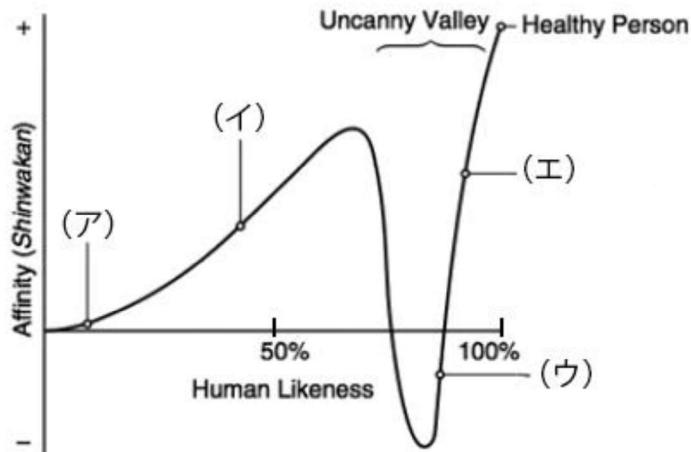


Figure 1

出典:IEEE Robotics & Automation Magazine(2012)(一部改変)
(Reprinted from "The Uncanny Valley: The Original Essay by Masahiro Mori". From IEEE Spectrum. © 2012 IEEE Media. All rights reserved. Used under license.)

問 1. 下線部①に関して、筆者はどのような二つの事例が対照的であると主張しているか、80字以内で述べなさい。

問 2. 下線部②のように我々が感じるのはなぜか、本文に即して100字以内で述べなさい。

問 3. 下線部③で述べられているデザインについて、本文の「不気味の谷」のグラフを参考にして100字以内で説明しなさい。

問 4. 下線部④のように著者が考える理由を本文に即して日本語で述べなさい。

問 5. 本文中に例で示された下記 (A) から (C) の事例は Figure 1 のグラフ中のどの点に当てはまるのか。グラフ上の点 (ア) から (エ) より選びなさい。

- (A) the industrial robot . . . ()
- (B) the toy robot . . . ()
- (C) the prosthetic hand . . . ()

2 以下の英文を読んで質問に答えなさい。

Many different things can happen at different stages of our lives in the biological cocktail of our bodies. We cannot predict exactly what's ahead, which is why it's important to follow a healthy lifestyle that minimizes risk of illness and disease. Eating at certain times of the day can shift the way you feel and live—and that includes preventing or mitigating health issues, from cancer to heart disease to hormonal imbalances. Whether or not you consider yourself high risk for disease, here are tips for making food part of your holistic approach to a long, healthy life.

mitigate : 和らげる

We have all seen—or lived with—the effects of cancer, and have witnessed how it can very quickly or very slowly change our lives. Cancer is a complex disease, and many factors play a role in its development, from genetics to ①lifestyle choices. Given all this, though we cannot say that eating certain foods can cure or all-out prevent cancer, certain nutritional steps can help decrease cancer risks. Many foods and nutrients have been linked to lower cancer rates because of the role they play in the body.

In fact, an analysis of research by Cancer Research UK indicates that just a few lifestyle changes—maintaining a healthy body weight, eating a healthy diet, cutting back on alcohol, not smoking, enjoying the sun safely, and keeping active—can prevent four in 10 cancers.

fortify : 強化する

While eating certain foods hasn't been shown to prevent or cure cancer, eating more fresh foods can help lower the risks of getting the disease. Vegetables, fortified with many good-for-you compounds and nutrients, are nature's best protective medicine, especially served raw or lightly cooked. Coffee and tea may also be helpful in fending off cancer; both are full of antioxidants, polyphenols, and flavonoids that have been linked with lower risk of the disease. Red and processed meat (ham, bacon, salami, and sausage), on the other hand, are linked to big-time increases in cancer rates, mostly because of the chemicals they contain, according to scientists.

Our movement is a complex orchestra of (A), (B), muscles, tendons, and other soft tissues; our brain is the conductor. Compromises between any of those body parts can play a role in how easily you move, and whether pain is involved. In addition to holding us up and protecting our vital organs, (A) serve vital chemical roles: They store nutrients and help produce blood and stem cells. But (A) are built in a honeycomb-like structure (think of the Eiffel Tower) whose density becomes compromised as we age. (B), meanwhile, act like door hinges: They allow our (A) to move. When (B) degenerate, they lose the cushioning—in the form of soft tissue and lubrication—that enables them to glide. The resulting grinding triggers an inflammatory response as the body rushes to

stem cells : 幹細胞

lubrication : 潤滑

heal.

But how does food influence our intricate system of movement? With the right nutrients—calcium, vitamins D and K, healthy fats—you can send in reinforcements to increase (A) density, which will make (A) stronger as you get older (and heal better if they’re broken). Exercises like yoga can help us keep our (B) more flexible, while strengthening our skeletons.

The brain is still largely a mystery, but we do know a bit about ② how our memory declines as we age. To recall information, neurons need to communicate. One sends a message to another, the receiver gets the message, and that connection builds bridges of information that you can use and recall. If you do not constantly send and receive messages, your neural connections wither away.

External elements affect them as well. For example, the wrong kind of food works as extreme weather coming to rust the bridge girders; as a result, inflammation tears the bridges down and it is harder for information to travel from neuron to neuron. The right kinds of foods work as bridge builders, cleaners (helping to remove rusty inflammation), and protectors. When you eat them can make a difference, too: In epidemiologic studies, early eating is associated with less cognitive decline, and in animal studies, time-restricted feeding has been shown to prevent it.

One of the main effects of excess weight and inches around your waist is development of type 2 diabetes, the condition that comes with elevated levels of blood glucose from increased insulin resistance. ③ About 10 percent of Americans have the disease, with at least another third at risk of developing it. This condition—a leading cause of death in the United States—has plenty of problems associated with it, including eye, nerve, and kidney damage. But it is also scary because of the increased risk of heart and brain-functioning problems.

The way to prevent diabetes comes down to ④ eating healthier and moving your body. Shrinking your waist size and losing weight help decrease insulin. Eating better-quality foods means you’ll be reducing the excess sugar and saturated fat that your body needs to process. That includes avoiding red meats, processed meats, and all processed foods—especially those loaded with sugar. Activity also helps you lose weight, making your muscles work harder, improving their ability to use insulin and absorb glucose.

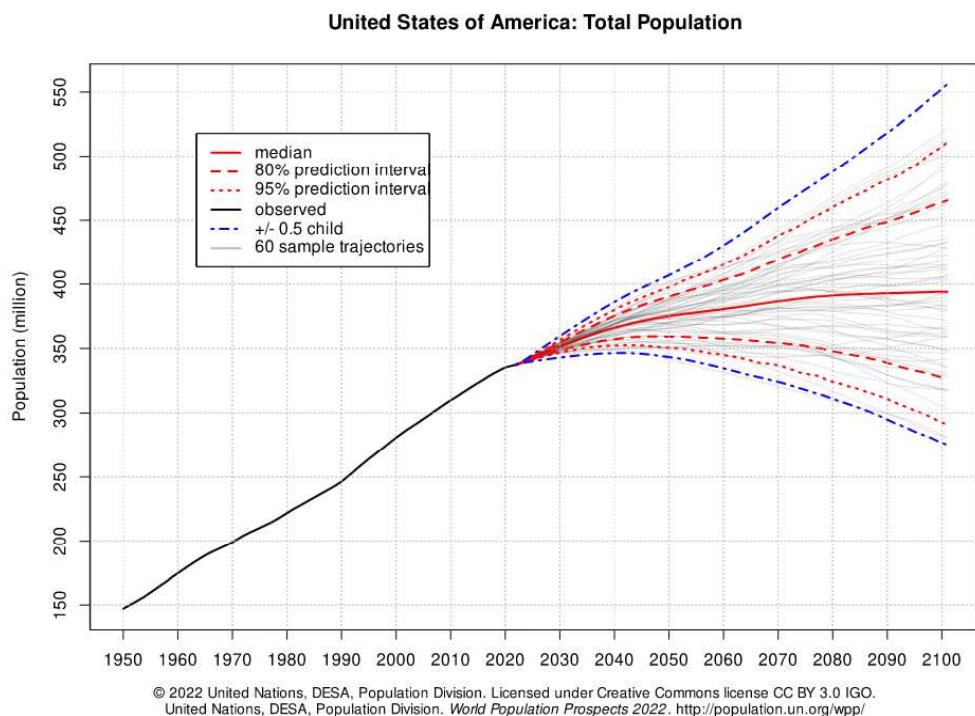
出典：National Geographic “How certain foods lower your risk of disease” (2022)
(一部改変)

bridge girders : 橋げた

type 2 diabetes : 2 型糖尿病

insulin resistance : インシ
ュリン抵抗性。糖尿病の
原因の一つ。

問1. つぎのうち下線部① lifestyle choices にあてはまるものはどれか、2つ選びなさい。


- a. Gene
- b. Virus
- c. Smoking
- d. Soil bacteria
- e. Excessive sun

問2. 空欄 (A), (B) に入る英単語 (どちらも複数形) を書きなさい。

問3. 下線部② how our memory declines の内容 (食事以外) を40字以内で説明しなさい。

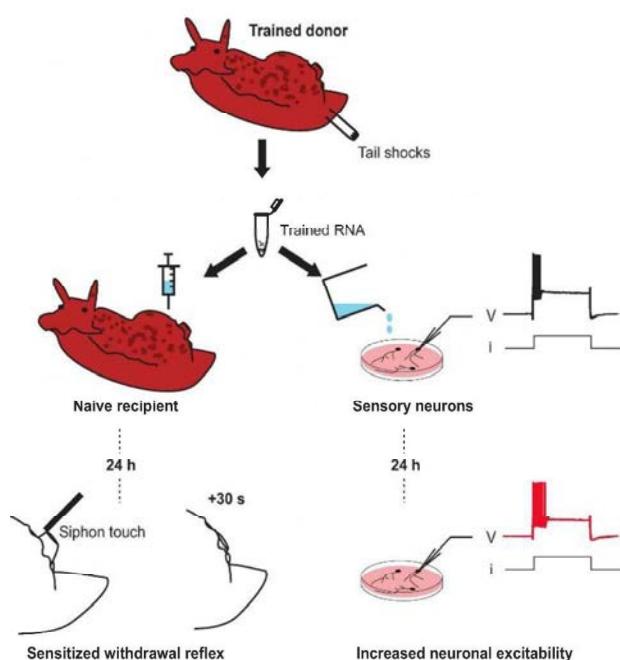
問4. 下線部③ About 10 percent of Americans have the disease, with at least another third at risk of developing it.

について、下記のグラフから米国の糖尿病発症のリスクのある患者は2030年には少なくともおおよそ何人と推定されるか。計算式と推定値を示しなさい。尚、2030年のアメリカ人の人口予測の中央値を350 millionとし、2030年においても糖尿病発症リスクの頻度は現在と変わらないものとする。

問5. 下線部④ eating healthier とは具体的にどのようなことを意味しているか、40字以内で説明しなさい。

3 以下の英文は 2018 年 5 月に Technology Networks に掲載された「Snail Memory Transplant a Success」と題された記事である。この英文を読んで質問に答えなさい。

UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. This research could lead to new ways to lessen the trauma of painful memories with RNA and to restore lost memories.


UCLA : カリフォルニア大学ロサンゼルス校
marine snail : アメフランシ

RNA : リボ核酸
trauma : 外傷
ameliorate : 改善する

eNeuro : 雜誌名

DNA : デオキシリボ核酸 (遺伝子の本体)

sensory neurons : 知覚神経

図の説明 : Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro. The research provides new clues in the search for the physical basis of memory. Bédécarats et al., eNeuro (2018).

The researchers gave mild electric shocks to the tails of a species of marine snail called Aplysia. The snails received five tail shocks, one every 20 minutes, and then five more 24 hours later. The shocks enhance the snail's defensive withdrawal reflex, a response it displays for protection from potential harm. When the researchers subsequently tapped the snails, they found those that had been given the shocks displayed a defensive contraction that lasted an average of 50 seconds, ①a simple type of learning known as "sensitization." Those that had not been given the shocks contracted for only about one second.

Aplysia : アメフラシ
reflex : 反射

sensitization : 感作。敏
感になること

The life scientists extracted RNA from the nervous systems of marine snails that received the tail shocks the day after the second series of shocks, and also from marine snails that did not receive any shocks. Then the RNA from the first (sensitized) group was injected into seven marine snails that had not received any shocks, and the RNA from the second group was injected into a control group of seven other snails that also had not received any shocks.

Remarkably, the scientists found that the seven that received the RNA from snails that were given the shocks behaved as if they themselves had received the tail shocks: They displayed a defensive contraction that lasted an average of about 40 seconds.

② "It's as though we transferred the memory," said Glanzman, who is also a member of UCLA's Brain Research Institute.

As expected, the control group of snails did not display the lengthy contraction.

Next, the researchers added RNA to Petri dishes containing neurons extracted from different snails that did not receive shocks. Some dishes had RNA from marine snails that had been given electric tail shocks, and some dishes contained RNA from snails that had not been given shocks. Some of the dishes contained sensory neurons, and others contained motor neurons, which in the snail are responsible for the reflex.

Petri dish : ペトリ皿
neuron : 神経細胞

sensory neurons : 知覚
神経
motor neuron : 運動神
経

When a marine snail is given electric tail shocks, its sensory neurons become more excitable. Interestingly, the researchers discovered, adding RNA from the snails that had been given shocks also produced increased excitability in sensory neurons in a Petri dish; it did not do so in motor neurons. Adding RNA from a marine snail that was not given the tail shocks did not produce this increased excitability in sensory neurons.

In the field of neuroscience, it has long been thought that memories are stored in synapses. (Each neuron has several thousand synapses.) Glanzman holds a different view, believing

excitable : 神経が興奮
する, とは, 神経を通
して刺激が伝達する,
ことを示す

synapse : シナプス。脳
の神経細胞が結合した

that memories are stored in the nucleus of neurons.

ネットワークのこと

③ "If memories were stored at synapses, there is no way our experiment would have worked," said Glanzman, who added that the marine snail is an excellent model for studying the brain and memory.

Scientists know more about the cell biology of this simple form of learning in this animal than any other form of learning in any other organism, Glanzman said. The cellular and molecular processes seem to be very similar between the marine snail and humans, even though the snail has about 20,000 neurons in its central nervous system and humans are thought to have about 100 billion.

In the future, Glanzman said, ④it is possible that RNA can be used to awaken and restore memories that have gone dormant in the early stages of Alzheimer's disease. He and his colleagues published research in the journal eLife in 2014 indicating that lost memories can be restored.

dormant : 休眠状態の

There are many kinds of RNA, and in future research, Glanzman wants to identify the types of RNA that can be used to transfer memories.

(Stuart Wolpert, "UCLA biologists 'transfer' a memory", Regents of University of California, May 14, 2018. <https://newsroom.ucla.edu/releases/ucla-biologists-transfer-a-memory>)

問1. 下線部①は具体的にはどのようなことを指しているか、120字程度で説明しなさい。

問2. 研究者が下線部②のように考えたのはなぜか、120字程度で説明しなさい。

問3. 研究者が下線部③のように考えたのはなぜか、60字程度で説明しなさい。

問4. 下線部④に関連して、今後 RNA を利用した記憶に関する研究にはどのような活用方法が考えられると思うか、本文で紹介されていない例をあげ、あなたの考えを 150字程度で述べなさい。

4 進行肺がんの緩和ケアに関する研究結果を論説した以下の文章を読んで、設問に答えなさい。

Palliative care focuses on relieving suffering and achieving the best possible quality of life for patients and their family caregivers. It involves the assessment and treatment of symptoms; support for decision making and assistance in matching treatments to informed patient and family goals; practical aid for patients and their family caregivers; mobilization of community resources to ensure a secure and safe living environment; and collaborative and seamless models of care across a range of care settings. Palliative care is provided both as hospice palliative care and nonhospice palliative care. Nonhospice palliative care is offered simultaneously with life-prolonging and curative therapies for persons living with serious, complex, and life-threatening illness. Hospice palliative care becomes appropriate when curative treatments are no longer beneficial, when the burdens of these treatments exceed their benefits, or when patients are entering the last weeks to months of life.

palliative care : 緩和ケア

mobilization : 動員

hospice : ホスピス

curative : 治癒的な

Comprehensive palliative care services integrate the expertise of a team of providers from different disciplines to address the complex needs of seriously ill patients and their families. Members of a palliative care team typically include professionals from medicine, nursing, and social work, with additional support from chaplaincy and professionals in nutrition, rehabilitation, pharmacy, and other professional disciplines, as needed. These programs are now available at more than 80% of large U.S. hospitals (those with more than 300 beds), where most Americans receive their care during complex and advanced illness.

chaplaincy : 牧師

Despite the increasing availability of palliative care services in U.S. hospitals and the body of evidence showing the great distress to patients caused by symptoms of the illness, the burdens on family caregivers, and the overuse of costly, ineffective therapies during advanced chronic illness, the use of palliative care services by physicians for their patients remains low. Physicians tend to perceive palliative care as the ①_____ to life-prolonging or curative care - what we do when there is nothing more that we can do - rather than as a simultaneously delivered adjunct to disease-focused treatment.

Temel and colleagues challenge this prevailing notion of palliative care by presenting the results of a randomized, controlled trial of early palliative care in addition to standard oncologic care for patients with newly diagnosed metastatic non-small-cell lung cancer. A total of 151 subjects were recruited and enrolled in the study at a single academic thoracic oncology practice. Health-related quality of life and mood were measured at baseline and at 12 weeks. In addition to standard oncologic care, patients in the intervention group met with a palliative care clinician at the time of enrollment and at least monthly thereafter. As compared with the standard care group, the intervention group had better quality of life, lower rates of depression, and ②a 2.7-month survival benefit.

randomized : ランダム化された (※1)

oncologic : 腫瘍の

metastatic : 転移性の

non-small-cell lung

cancer : 肺がんの一種で非小細胞肺がん (※2)

enrolled : 登録された

The results of this study show that palliative care is appropriate and potentially beneficial when it is introduced at the time of diagnosis of a serious or life-limiting illness - at the same time as all other appropriate and beneficial medical therapies are initiated. The fact that palliative care improved quality-of-life outcomes is consistent with the results of other studies of both nonhospice and hospice palliative care. The substantial survival advantage observed, though it is supported by other recent studies, requires replication.

replication : 複製

The specific components of the study's palliative care intervention remain unspecified and hence may not be easily reproducible in other practice settings. For example, the salutary effect of additional time with and attention from health care providers and physicians, as opposed to a specific benefit derived from palliative care itself, was not assessed and is a limitation of the study. The reasons for the 2.7-month survival benefit in the palliative care group - a benefit that is equivalent to that achieved with a response to standard chemotherapy regimens - are unknown but may result from effective treatment of depression, improved management of symptoms, or a reduction in the need for hospitalization. The current study was not designed to address these important questions. Despite these limitations, Temel and colleagues are to be commended for overcoming many of the challenges and barriers to conducting a randomized trial of a palliative care intervention.

reproducible : 再現できる

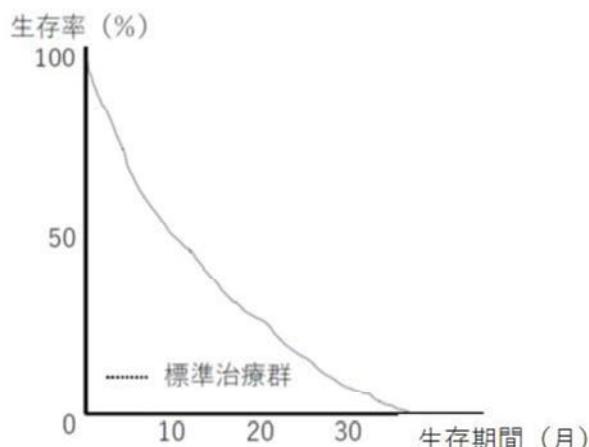
chemotherapy : 化学療法。抗がん剤による薬物療法

hospitalization : 入院

The study by Temel et al. represents an important step in confirming the beneficial outcomes of ③a simultaneous care model that provides both palliative care and disease-specific therapies beginning at the time of diagnosis. This study is an example of research that shifts a long-held paradigm that has limited access to palliative care to patients who were predictably and clearly dying. The new approach recognizes that life-threatening illness, whether it can be cured or controlled, carries with it significant burdens of suffering for patients and their families and that this suffering can be effectively addressed by modern palliative care teams. Perhaps unsurprisingly, reducing patients' misery may help them live longer. We now have both the means and the knowledge to make palliative care an essential and routine component of evidence-based, high-quality care for the management of serious illness.

(Adapted with permission from The New England Journal of Medicine, Amy S. Kelley, M.S.H.S., and Diane E. Meier, Palliative Care -- A Shifting Paradigm, 363:781-782. Copyright © 2010 Massachusetts Medical Society.)

※1 今回の試験では患者を「緩和ケア介入群」と「標準治療群」にランダムに割り付け、その後の経過を観察した。


※2 転移性の肺がんは治癒が困難であり、標準治療として抗がん剤による薬物療法が延命目的に行われる。

問1. 下線部①に適切な単語を選びなさい。

- a. essential
- b. alternative
- c. waste
- d. worth
- e. resemblance

問2. 下線部②が分かるよう、下図に「緩和ケア介入群」の生存曲線を書き加えなさい。「緩和ケア介入群」が分かるように作図すること。

補足：同研究では、患者の生存期間は中央値（50%の患者が生存している期間）で評価されました。

問3. 著者が Temel らによる研究の問題点と考えていることは何か、本文に即して 3 点述べなさい。

問4. 著者は下線部③のようなケアモデルをどのように分類しているか、本文中の英単語 3 語で答えなさい。

問5. 本文の内容から正しいと判断できる英文を、次の 1 ~ 5 の中から 2 つ選び番号で答えなさい。

1. Palliative care helps patients and families choose treatments that meet their goals.
2. Palliative care is incompatible with religious support.
3. Oncologists underutilize palliative care in the US.
4. The Temel's study assessed the effect of palliative care on the efficacy of chemotherapy.
5. Benefit of palliative care shown in Temel's study can be easily replicated at other hospitals.

-----このページは白紙-----

令和 6 年度 AO 入試問題集 (医学部保健学科)

公表期限：2027 年 3 月末

東北大学アドミッション機構

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験①問題

令和 5 年 11 月 4 日

志願学部／学科／専攻	試験時間	ページ数
医学部保健学科 看護学専攻	9:30~10:30 (60 分)	5 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 5 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

——このページは白紙——

A3

——このページは白紙——

A3

1

以下の問いに答えよ。

(1) 1, 2, 3, 4, 5, 6 の目が等しい確率で出る 1 個のさいころを 3 回続けて投げる。出た目が連続する 3 つの数となる確率を求めよ。ただし、出る目の順番は問わない。

(2) a を実数とする。 x についての方程式

$$(ax + 1)^2 = (x + a)^2$$

を解け。

(3) 次の定積分の値を求めよ。

$$\int_{-1}^1 |x(x + 1)^2| dx$$

2

三角形 ABC において, $AB = 7$, $BC = 5$, $CA = 3$ とする。辺 BC を $4:1$ に内分する点を D とする。頂点 B から直線 AC に垂線を引き, 直線 AC との交点を E とする。 $\overrightarrow{AB} = \vec{b}$, $\overrightarrow{AC} = \vec{c}$ とするとき, 次の問い合わせに答えよ。

- (1) 内積 $\vec{b} \cdot \vec{c}$ の値を求めよ。
- (2) 線分 AE の長さを求め, \overrightarrow{AE} を \vec{c} を用いて表せ。
- (3) 三角形 ABC の面積を求めよ。
- (4) 点 E に関して点 C と対称な点を F とする。直線 AD と直線 BF との交点を G とするとき, 三角形 BDG の面積を求めよ。

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験② 封筒

令和 5 年 11 月 4 日

志願学部／学科／専攻	試験時間	問題冊子数
医学部保健学科 看護学専攻	13:00~14:20 (80分)	3冊

注意事項

- 試験開始の合図があるまで、この封筒を開いてはいけません。
- この封筒には、「問題冊子」3冊、「解答用紙」3種類、「メモ用紙」1冊が入っています。
- 筆記試験②は、＜必答問題1＞、＜選択問題1＞、＜選択問題2＞の3冊からなります。
※ 必答問題1の他に、＜選択問題1～2＞のうちから1つを選択し、解答してください。選択問題を選択しなかった場合は、失格となります。
※ ＜選択問題＞の解答用紙1枚目の所定の欄に、選択の有無を で囲んでください。

選択する場合：

<input checked="" type="checkbox"/> 選択する
<input type="checkbox"/> 選択しない

選択しない場合：

<input type="checkbox"/> 選択する
<input checked="" type="checkbox"/> 選択しない

- ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。問題冊子のホチキスは外さないでください。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」は1枚につき1か所の所定の欄に、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。選択しない問題の解答用紙にも受験記号番号を記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は、「解答用紙」は全て回収しますので持ち帰ってはいけません。
本封筒、「問題冊子」及び「メモ用紙」は持ち帰ってください。

令和 6 年度（2024 年度）東北大学
AO 入試（総合型選抜）Ⅱ期

筆記試験②

＜必答問題 1 ＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
医学部保健学科 看護学専攻	13:00～14:20 (80 分)	15 ページ

——このページは白紙——

——このページは白紙——

必要があれば次の数値を用いなさい。

気体定数: $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$

絶対零度: $-273 \text{ }^\circ\text{C}$

アボガドロ定数: $6.0 \times 10^{23} / \text{mol}$

ファラデー定数: $9.65 \times 10^4 \text{ C/mol}$

原子量: H = 1.0 Li = 6.9 C = 12.0 O = 16.0 Cl = 35.5 K = 39.1

1 気体の溶解に関する文〔I〕と文〔II〕を読んで、問1から問5に答えなさい。

〔I〕 体積を自由に変えることのできるピストン

付きの容器に、水 1.0 L と気体A 0.30 mol のみを

入れて、気体Aと水を合わせた容器内の体積が 3.0 L になるように固定具でピストンを固定した（図1）。

実験のあいだ、容器の温度は常に $20 \text{ }^\circ\text{C}$ に保たれていた。気体Aの水への溶解はヘンリーの法則に従い、

$20 \text{ }^\circ\text{C}$ で水に接している $1.0 \times 10^5 \text{ Pa}$ の気体Aは、水 1.0 L に $3.9 \times 10^{-2} \text{ mol}$ 溶けることとする。気体Aは今回の実験における温度、圧力のもとで凝縮することなく、理想気体としてふるまい、また、ピストンの質量、水の蒸気圧は無視する。

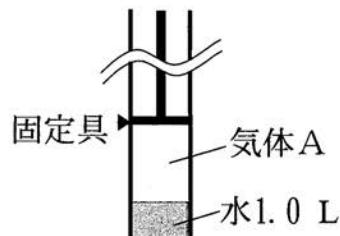


図1

問1 容器内の気体Aの圧力を P [Pa] として(1)から(3)に答えなさい。

(1) 水 1.0 L に溶解している気体Aの物質量 n_s [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。

$$n_s = \boxed{} \times P$$

(2) 水の上の空間に存在する気体Aの物質量 n_g [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。ただし、容器内の気体部分の体積は 2.0 L とし、気体定数 $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$ と絶対温度 293 K の積を $2.43 \times 10^6 \text{ Pa} \cdot \text{L}/\text{mol}$ として計算しなさい。

$$n_g = \boxed{} \times P$$

(3) P [Pa] の値を求め、その値を有効数字 2 桁で書きなさい。

問 2 溫度を 20°C に保ったまま、図 1 のピストンの固定をはずして自由に動く状態にしたところ、容器内の気体 A の圧力が容器にかかる大気圧 ($1.0 \times 10^5 \text{ Pa}$) と等しくなってピストンが止まった。この状態を状態 1 とする(図 2 左)。状態 1 で水に溶けている気体 A の物質量を $n_1 \text{ [mol]}$ とする。次に温度を 20°C に保ったまま、状態 1 のピストンにおもりを載せ、容器内の気体 A の圧力を $2.0 \times 10^5 \text{ Pa}$ とした状態を状態 2 とする(図 2 右)。状態 2 で水に溶けている気体 A の物質量を $n_2 \text{ [mol]}$ とする。(1) および(2) に答えなさい。ただし、固定をはずしたピストンは摩擦なく動くものとする。

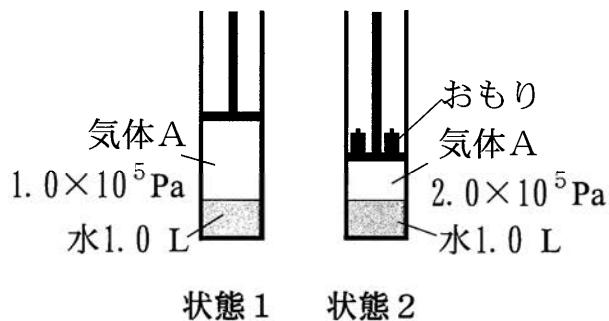
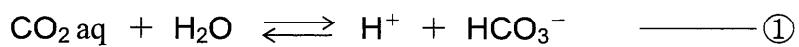


図 2


(1) $n_1 \text{ [mol]}$ の気体 A の体積を $1.0 \times 10^5 \text{ Pa}$ のもとで、 $n_2 \text{ [mol]}$ の気体 A の体積を $2.0 \times 10^5 \text{ Pa}$ のもとで測定したところ、それぞれ $V_1 \text{ [L]}$ 、 $V_2 \text{ [L]}$ であった。 V_1 と V_2 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積の測定はいずれも 20°C で行った。

① $2V_1 = V_2$ ② $V_1 = V_2$ ③ $V_1 = 2V_2$

(2) $n_1 \text{ [mol]}$ の気体 A と $n_2 \text{ [mol]}$ の気体 A の体積を同じ圧力のもとで測定したところ、それぞれ $V_3 \text{ [L]}$ 、 $V_4 \text{ [L]}$ であった。 V_3 と V_4 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積の測定はいずれも 20°C で行った。

① $2V_3 = V_4$ ② $V_3 = V_4$ ③ $V_3 = 2V_4$

[II] 水を 25 °C, 1.0×10^5 Pa の空気中に十分に長く放置したところ、この水に空気中の二酸化炭素が溶け込み、水溶液となった。この水溶液を水溶液Bと呼ぶ。水溶液Bは二酸化炭素の溶解に関して平衡状態となっている。水に溶解した二酸化炭素を $\text{CO}_2 \text{ aq}$ とすると、 $\text{CO}_2 \text{ aq}$ のごく一部は炭酸 H_2CO_3 の生成を経由して次のように二段階で電離する。

25 °Cにおいて、一段目の反応①の電離定数は $K_1 = 4.5 \times 10^{-7}$ mol/L、二段目の反応②の電離定数は $K_2 = 4.7 \times 10^{-11}$ mol/L とする。

二酸化炭素の水への溶解についてはヘンリーの法則が成り立ち、25 °Cで 1.0×10^5 Pa の二酸化炭素は 1.0 L の水に 3.0×10^{-2} mol 溶けることとする。実験のあいだ空気の組成は一定で、二酸化炭素以外に水と反応する気体は空気中に存在しないこととする。また、水の電離は考慮しないこととする。

問3 実験に用いた空気中に二酸化炭素は体積の割合で 0.040% 存在した。 1.0×10^5 Pa の空気における二酸化炭素の分圧 [Pa] を求めて、その数値を有効数字2桁で書きなさい。

問4 水溶液B 1.0 L に二酸化炭素は何 mol 溶解しているか。数値を求めて有効数字2桁で書きなさい。ただし、二酸化炭素の溶解によって水の体積は変化しないこととする。

問5 水溶液BのpHに関連した次の(1)から(3)に答えなさい。ただし、 K_2 の値が非常に小さい二段目の反応②は無視することができ、水素イオン H^+ は一段目の反応①によってのみ生じることとする。

(1) 問4で求めた水溶液B 1.0 L に溶解している二酸化炭素の物質量を C [mol] とすると電離前の二酸化炭素のモル濃度は C [mol/L] となる。一段目の反応①の電離度を α ($0 < \alpha \leq 1$) としたとき、下の空欄 に C と α を用いた文字式を書き入れ、 K_1 を表す式③を完成させなさい。

$$K_1 = \frac{[H^+][HCO_3^-]}{[CO_2]} = \boxed{\quad} \quad \text{--- ③}$$

(2) ③式の K_1 と C に数値を代入して α を求めたところ、 $\alpha = 0.18$ であった。水溶液Bの水素イオン濃度 $[H^+]$ を求めて、次の式の空欄 にあてはまる数値を有効数字2桁で書きなさい。ただし、空欄 にあてはまる数値は1以上で、10より小さい。

$$[H^+] = \boxed{\quad} \times 10^{-6} \text{ mol/L}$$

(3) 水溶液BのpHは次のどの範囲にあると考えられるか。最も適切なものをアからオより1つ選んで解答欄の記号を○で囲みなさい。

ア 3.0から4.0の間	イ 4.0から5.0の間
ウ 5.0から6.0の間	エ 6.0から7.0の間
オ 7.0から8.0の間	

2 次の文章〔I〕, 〔II〕および〔III〕を読んで、問1から問8に答えなさい。

〔I〕 ある反応が進行するかどうかは、その反応の活性化工エネルギーが正反応も逆反応も十分に速く起こるほど低い場合には、次の2つの要因によって決まる。なお、以下の文章では融解や溶解などの状態の変化も広義の反応に含めて述べる。

1つの要因は、反応物から生成物に変化する際の内部エネルギーの変化である。内部エネルギーとは、いま観察者が注目している部分（これを系という）がもつ全エネルギー、すなわち運動エネルギーや結合エネルギーの総和のことである。一般に内部エネルギーが小さいほどその系は安定である。この変化の過程で系の内部エネルギーが減少する場合には、系はその分のエネルギーを熱として系の外部に放出するので発熱反応となり、また生成物は反応物よりも安定になるので、反応は自発的に進行しやすい。逆に、系の内部エネルギーが増加する場合には、その分のエネルギーを系の外部から取り込むので吸熱反応となり、生成物は反応物よりも不安定になるので反応は進行しにくい。

もう1つの要因は、反応物から生成物に変化する際の系の乱雑さの変化である。反応によって系の乱雑さが増加する場合には、その反応は自発的に進行しやすいことが知られている。逆に、反応によって系の乱雑さが減少する場合には、その反応は進行しにくい。ここで、系の乱雫さが増加する変化とは、(a)固体から液体へ（融解）、液体から気体へ（気化）などの状態変化、(b)分離されていた2つの物質が均一に混じり合う変化（気体の混合、固体の溶媒への溶解など）、(c)化学反応において反応物より生成物の方が分子の数が増える変化などである。

ある反応において、上記2つの要因の効果が互いに強め合う場合には、反応は不可逆となり、自発的に進行するか、または全く進行しないかのどちらかとなる。一方、2つの要因の効果が互いに弱め合う場合には、反応は可逆となり、自発的に進行するかどうかは、その反応条件で2つの要因のどちらが大きいかによって決まる。たとえば、反応の進行に対して、反応による内部エネルギーの増加が与える効果が、乱雫さの増加が与える効果より大きければ、その反応は自発的には進行しないが、小さければ自発的に進行する。

問1 次の反応 (ア) から (オ) は、それぞれ下の表の反応の分類 A から D のどれにあてはまるか。解答欄に A から D の記号を記入しなさい。なお、これらの反応の最初と最後で系の温度は同じであるとする。

(ア) C_3H_8 (気) + 5O_2 (気) \longrightarrow 3CO_2 (気) + $4\text{H}_2\text{O}$ (気)

(イ) N_2O_4 (気) \longrightarrow 2NO_2 (気)

(ウ) N_2 (気) + 3H_2 (気) \longrightarrow 2NH_3 (気)

(エ) H_2O (液) \longrightarrow H_2O (固)

(オ) I_2 (固) \longrightarrow I_2 (気)

表 熱の出入りと乱雑さの変化による反応の分類

反応の分類	熱の出入り	乱雑さの変化
A	発熱	増加
B	吸熱	減少
C	発熱	減少
D	吸熱	増加

問2 KCl (固) の 25°C での水への溶解熱は -17.2 kJ/mol で吸熱反応であるが、自発的に進行する。その理由を「内部エネルギー」および「乱雑さ」という語句を用いて 40~50 字程度で説明しなさい。

〔II〕 塩化リチウムおよび塩化カリウムの結晶はいずれも塩化ナトリウム型構造（図1）をとっている。塩化リチウムおよび塩化カリウムの融点はそれぞれ $613\text{ }^{\circ}\text{C}$ および $776\text{ }^{\circ}\text{C}$ であるが、塩化リチウムと塩化カリウムを塩化リチウム : 塩化カリウム = 6:4 の物質量比で含む均一な混合物は、 $450\text{ }^{\circ}\text{C}$ では融解し液体となっている。この融解している塩、すなわち溶融塩を溶融塩 E とする。

溶融塩 E 100.0 g を $450\text{ }^{\circ}\text{C}$ に保ち、適切な材質の電極 X および電極 Y を挿入して電極 X と電極 Y との間に 3.6 V の電圧をかけたところ、電極 X 上にはリチウム単体（融点 $181\text{ }^{\circ}\text{C}$ ） が液体として生成し、電極 Y 上には塩素が気体として発生した。液体のリチウムの密度は溶融塩 E の密度よりも小さいため、生成したリチウムは溶融塩 E に浮かんでくるので、これを塩素と接触させないようにして集めることによりリチウム単体が得られた。なお、この電気分解の間に塩化カリウムは変化せず、また溶融塩 E は液体の状態を保っていたとする。

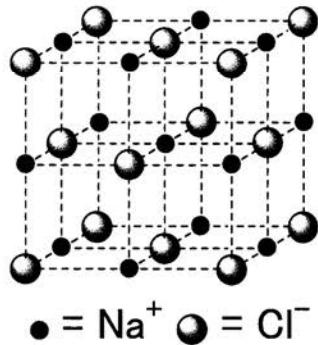


図1 塩化ナトリウム型構造

問3 塩化カリウム結晶の単位格子1個当たりの質量は何 g か。その数値を有効数字2桁で答えなさい。

問4 下線部において、電極 X および電極 Y のうち一方は陽極、もう一方は陰極である。(ア) 陽極上および(イ) 陰極上で起こる反応を、それぞれ電子(e^-)を含むイオン反応式で書きなさい。

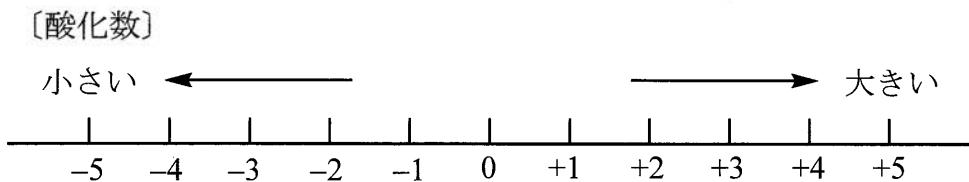
問5 電極 X と電極 Y との間に 5.0 A の一定電流が 2.0 時間流れたとすると、得られるリチウム単体の物質量は何 mol か。その数値を有効数字2桁で答えなさい。

〔III〕 (a) 酸化物には、水と反応させて水溶液としたときに、その水溶液が酸性を示すものから塩基性を示すものまで様々なものがある。また、水に溶けない酸化物でも、酸や塩基の水溶液と反応して溶けるものがある。たとえば、(b) 酸化アルミニウムは両性酸化物と呼ばれ、強酸とも強塩基とも反応して溶ける。また、二酸化ケイ素は常温ではほとんどの酸や塩基に対して安定であるが、(c) フッ化水素酸（フッ化水素の水溶液）とは反応して溶ける。

問6 下線部(a)に関連して、下の(ア)から(オ)に示す酸化物 0.1 mol を水 1 L に溶かし、得られた水溶液の pH を比べたとき、pH が最も低いもの、2番目に低いものおよび3番目に低いものを下の(ア)から(オ)の中からそれぞれ選び、それらの記号を pH が低い順に、左から右に列記しなさい。

(ア) BaO (イ) SO₃ (ウ) Na₂O (エ) P₄O₁₀ (オ) CO₂

問7 下線部(b)に関して、次の反応(1)および(2)のイオン式を含まない化学反応式をそれぞれ書きなさい。


- (1) 酸化アルミニウムと塩酸との反応
- (2) 酸化アルミニウムと水酸化ナトリウム水溶液との反応

問8 下線部(c)で起こる反応のイオン式を含まない化学反応式を書きなさい。

3

次の問1から問5に答えなさい。

問1 下図の酸化数の大小関係を参考にして、下の物質のグループ(1)から(4)のそれ
ぞれの中で、指定した元素の酸化数が2番目に大きい物質中の指定した元素の酸
化数を書きなさい。

(1) CH₄ CO₂ CO CaC₂ の中の炭素

(2) NH₃ NO₂ AgNO₃ NaNO₂ の中の窒素

(3) H₂O H₂O₂ CO O₂ の中の酸素

(4) NaClO Cl₂ NaCl KClO₃ の中の塩素

問2 工業的に二酸化硫黄を発生させる方法の一つは、黄鉄鉱の燃焼である。黄鉄鉱の主成分は FeS₂ であり、これは Fe²⁺ と S₂²⁻ からなるイオン性化合物である。

(a) FeS₂ を空気中で燃焼させると酸化鉄(III)と二酸化硫黄が生成する。 発生した
(b) 二酸化硫黄を濃い水酸化ナトリウム水溶液に通すと、亜硫酸ナトリウムが生成する。 この亜硫酸ナトリウムは、実験室で二酸化硫黄を発生させるとときに試薬として用いられる。すなわち、(c) 亜硫酸ナトリウムに希硫酸を加えると二酸化硫黄が発生する。

下線部 (a), (b) および (c) で起こる反応の、イオン式を含まない化学反応式を、
それぞれ解答欄に書きなさい。

問3 炭酸ナトリウム x [mol] と水酸化ナトリウム y [mol] を含む結晶の混合物がある。これをすべて水に溶かして 100.0 mL の水溶液とした。この水溶液を 10.0 mL ずつ 2 つの三角フラスコ A および B に入れた。三角フラスコ A にメチルオレンジを指示薬として加え、1.00 mol/L の塩酸で滴定したところ、気体の発生が観察され、また塩酸を 14.50 mL 加えたところで水溶液の色が変色した。

三角フラスコ B には、炭酸バリウムの白色沈殿が生じなくなるまで塩化バリウム水溶液を加えた。その後、この水溶液にフェノールフタレインを指示薬として加え、1.00 mol/L の塩酸で滴定したところ、10.50 mL 加えたところで水溶液の色が変色した。

次の(1)と(2)に答えなさい。

- (1) 三角フラスコ A 中で、炭酸ナトリウムと塩酸との間で起こった反応の、イオン式を含まない化学反応式を書きなさい。
- (2) 最初の結晶の混合物中の(a)炭酸ナトリウムの物質量 x [mol] および(b)水酸化ナトリウムの物質量 y [mol] を求め、その数値を有効数字 3 桁でそれぞれの解答欄に書きなさい。

問 4 示性式 C_4H_9OH で表されるアルコールの構造式を図 1 に示す。これらの中で、下の条件 (1) から (4) の各々に当てはまるアルコールを A から D の中から選び、その記号を解答欄に書きなさい。なお、それぞれの条件において、解答は 1 つとは限らない。

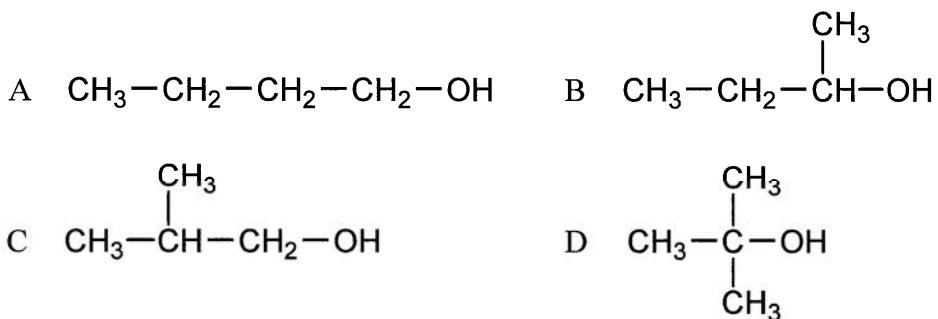
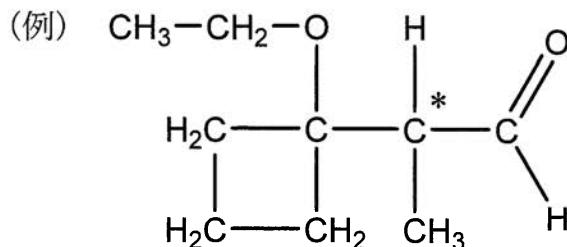



図1

- (1) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、ケトンを生成するアルコール
- (2) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、カルボン酸を生成するアルコール
- (3) 酸を加えて加熱し、分子内脱水反応を起こさせて生じるアルケンが、エチル基を含まないアルケンのみであるアルコール
- (4) ヨウ素と水酸化ナトリウム水溶液を加えて反応させると、 CHI_3 が主要生成物の 1 つとして生じるアルコール

問 5 次の指定された条件 (1) から (4) を満たす有機化合物のうち、不斉炭素原子を 1 個もつものの構造式を、それぞれ 1 つずつ書きなさい。不斉炭素原子には*印を付けなさい。構造式は下の例にならって書くこと。

- (1) 分子式 C_7H_{16} をもち 3 個の炭素と結合している炭素を 2 個含むアルカン
- (2) 分子式 $\text{C}_5\text{H}_{12}\text{O}$ をもつエーテル
- (3) 分子式 $\text{C}_5\text{H}_8\text{O}$ をもち四員環構造（4 個の原子からなる環状構造）をもつケト
ン
- (4) 分子式 $\text{C}_3\text{H}_6\text{O}_3$ をもつヒドロキシ酸

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 1 ＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
医学部保健学科 看護学専攻	13:00～14:20 (80分)	12 ページ

——このページは白紙——

——このページは白紙——

1

図1のように、表面のあらい板がありその中心に軸が取り付けてある。長さ ℓ の軽くて伸び縮みしない棒の一端に質量 m の小物体を取り付け、他端を板の軸に、なめらかに自由に動くことができるよう取り付けた。小物体は板の上でのみ運動する。小物体と板との間の静止摩擦係数は μ 、動摩擦係数は μ' であり、棒と板との間に摩擦力ははたらかない。板は傾きを変えることができ、水平面と板との間の角度（傾き角）を φ とする。また、板表面の軸の位置を原点 O として、水平方向に x 軸、傾いた斜面にそって下方に y 軸をとる。 y 軸と棒がなす角度を θ として板の軸を上から見て反時計回りを正の角度とする。重力の大きさを g とし、空気抵抗は無視できるものとする。角度はラジアンを用いて表す。

次の問1～問4に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

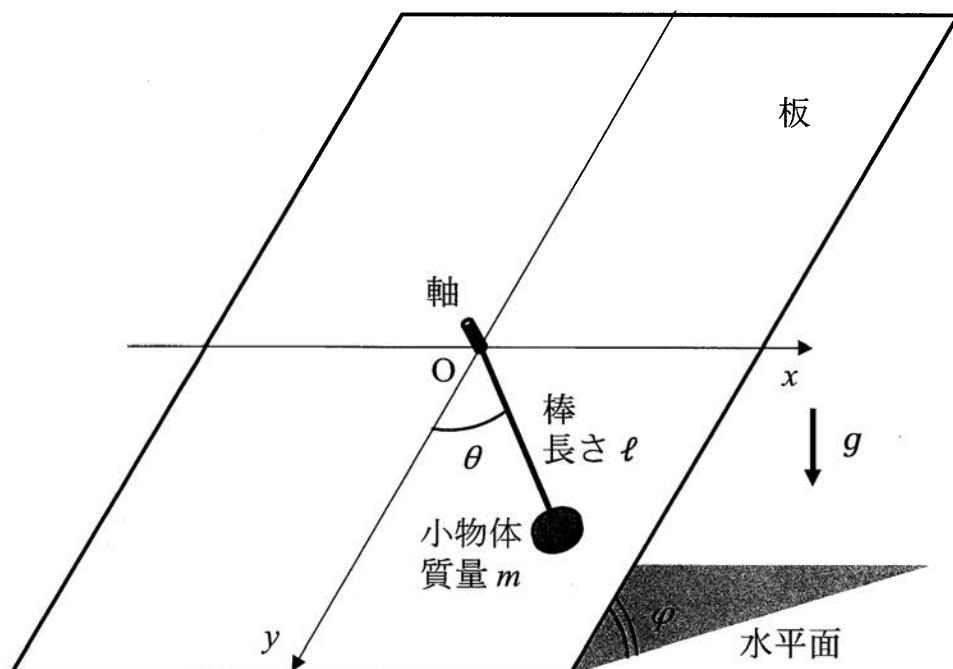


図1

※採点では、重力加速度の大きさを g として計算している解答も、論理的に間違が無ければ正解として扱った。

問1 はじめに、図2のように板を垂直に立てて傾き角を $\varphi = \frac{\pi}{2}$ とした。小物体を $\theta = \frac{2}{3}\pi$ の角度の位置から静かにはなすと小物体は板から離れることなく運動し、 $\theta = \frac{1}{3}\pi$ の角度の位置を速さ v で通過した。

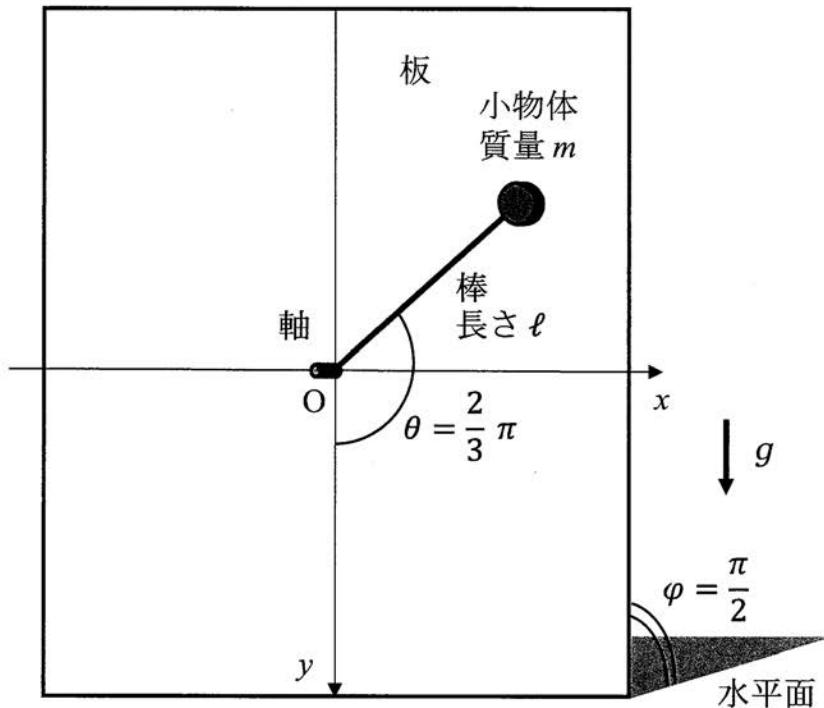


図2

- (a) 小物体の速さ v を、 m ， g ， ℓ から必要なものを用いて表せ。
- (b) $\theta = \frac{1}{3}\pi$ の位置を通過した瞬間の小物体が受ける遠心力の大きさ f を、 m ， g を用いて表せ。
- (c) $\theta = \frac{1}{3}\pi$ の位置を通過した瞬間の小物体が棒から受ける力の大きさ S を、 m ， g を用いて表せ。また、その力の向きを答えよ。

問2 次に, 傾き角を $\varphi = \frac{\pi}{2}$ のまま, $|\theta|$ が十分小さい位置から小物体を静かにはなした。小物体は板の表面にそって $x = 0$, $y = \ell$ の点を中心に, 十分小さな振れ角で振動した。

(a) 小物体にはたらく重力と棒から受ける力の合力の x 成分 F を, m , g , ℓ と小物体の位置 x を用いて表せ。ただし, F の正の向きを x の正の向きとする。必要であれば角度 α について, $|\alpha|$ が十分小さいときに成り立つ近似式 $\sin \alpha \approx \alpha$, $\cos \alpha \approx 1$ を用いよ。

(b) 振動の角振動数 ω と周期 T を, m , g , ℓ から必要なものを用いて表せ。

問3 その後, 板を水平にして傾き角を $\varphi = 0$ とし, 小物体を, 棒から力を受けないようにして x 軸上の $x = \ell$ の位置に静かに置いた。その後, 板の傾き角をゆっくり大きくしていくと, 傾き角が φ_0 になったときに小物体はすべりだした。

(a) 小物体がすべりだす直前における, 重力の y 成分の大きさ g' と, 垂直抗力の大きさ N を, m , g , φ_0 を用いて表せ。

(b) 静止摩擦係数 μ を, m , g , φ_0 , ℓ から必要なものを用いて表せ。

問4 小物体がすべりだした直後, 板の傾き角を φ_0 に保った。すべり出した小物体は, x 座標が負になることなく, ちょうど y 軸上の $y = \ell$ で静止した。

(a) 小物体がすべり出してから静止するまでに, 動摩擦力が小物体にした仕事 W を, m , g , φ_0 , ℓ , μ' を用いて表せ。

(b) μ' を, m , g , φ_0 , ℓ から必要なものを用いて表せ。

2

熱を低温部分から高温部分に継続的に移動する機関をヒートポンプといい、エアコンなどに応用されている。単原子分子理想気体を使った簡略化したモデルでその原理を考える。

図1のように、物質量 n の単原子分子理想気体（以下、気体と呼ぶ）を、なめらかに動かすことのできるピストンでシリンダー内に封じた。ピストンおよびシリンダーの側面は断熱されておりシリンダーの底面のみが熱を通す。断熱板、絶対温度 T_H の高温の物体、絶対温度 T_L の低温の物体があり、シリンダーを移動することで底面をこれらと接触させることができる。はじめにシリンダーの底面は断熱板と接触しており、気体の絶対温度は T_H であった。これを状態 A とする。シリンダーの移動とピストンの上下により、気体の状態を、図2の圧力-体積図（ p -V 図）に示すように、状態 A→状態 B→状態 C→状態 D→状態 A と 1 サイクル変化させた。

温度は絶対温度で表し、気体定数を R とする。また、高温および低温の物体は十分大きな熱容量を持っており温度は変わらないものとする。必要であれば、内部エネルギーの変化 ΔU と温度変化 ΔT には次式が成り立つことを用いてよい。

$$\Delta U = \frac{3}{2} nR\Delta T$$

次の問1～問5に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

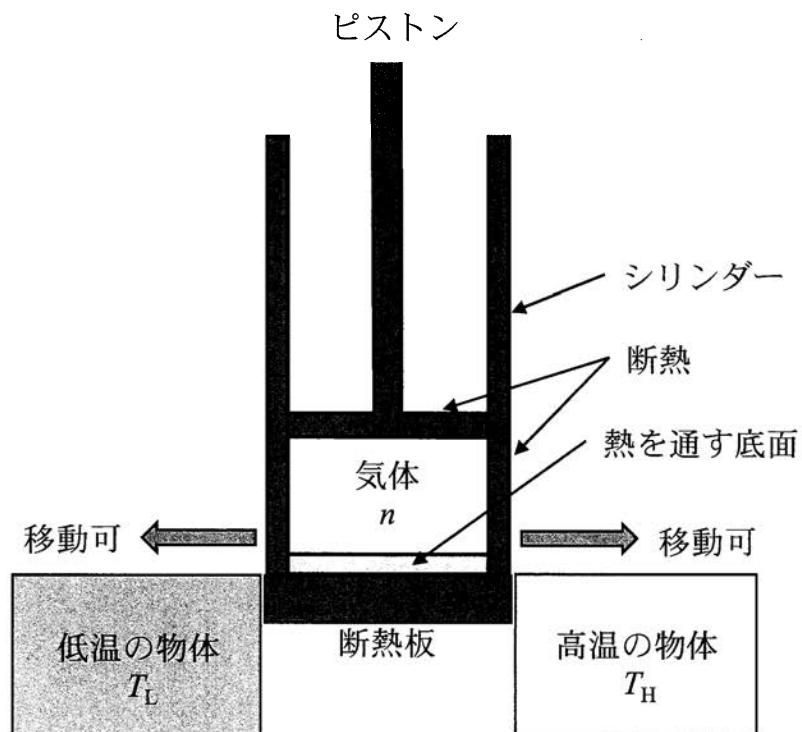


図1

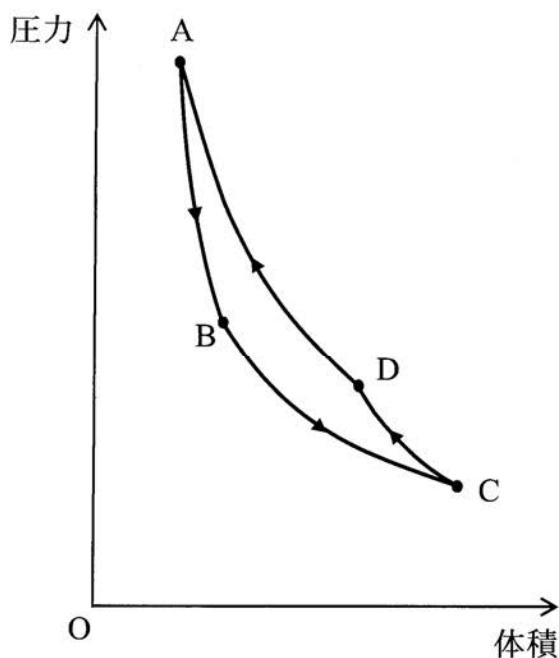


図 2

問 1 状態 A から、シリンダーの底面を断熱板に接触させたまま断熱変化でピストンをゆっくりと引き上げ、気体の温度が T_L の状態 B にした。内部エネルギーの変化 ΔU_{AB} と気体がされた仕事 W_{AB} を、 R ， n ， T_L ， T_H を用いて表せ。

問 2 次に、シリンダーを移動して底面を低温の物体に接触させ、等温変化でピストンをゆっくりと引き上げ、気体がされた仕事が W_{BC} になった状態 C でピストンを止めた。低温の物体から気体が受け取った熱量 Q_{BC} を、 W_{BC} を用いて表せ。

問 3 さらに、シリンダーの底面を断熱板上に再び移動し、断熱変化でピストンをゆっくりと押し込み、気体の温度が T_H の状態 D にした。このとき気体がされた仕事 W_{CD} を、問 1 の W_{AB} を用いて表せ。

問4 最後に、シリンダーの底面を高温の物体に接触させて、等温変化でピストンをゆっくりと押し込み、状態Aに戻した。このとき気体がされた仕事は W_{DA} であった。

この1サイクルで、高温の物体が気体から受け取った熱量 Q_h と、気体がされた仕事の総和 W ($W = W_{AB} + W_{BC} + W_{CD} + W_{DA}$) との比 $\frac{Q_h}{W}$ は、ヒートポンプを暖房機として使ったときの性能を表す係数となる。 $\frac{Q_h}{W}$ を、 W_{BC} 、 W_{DA} を用いて表せ。また、 $W > 0$ であることを用いて、(① 1より大きい、② 1に等しい、③ 1より小さい) のいずれかを、①～③で答えよ。

問5 Q_h と W は、圧力-体積図 ($p-V$ 図) の面積に対応する。 Q_h と W それについて、対応する面積を図3のA, B, C, D, p, q, r, s から必要なものを用いて、たとえば「ABqpで囲まれた面積」などのように表せ。

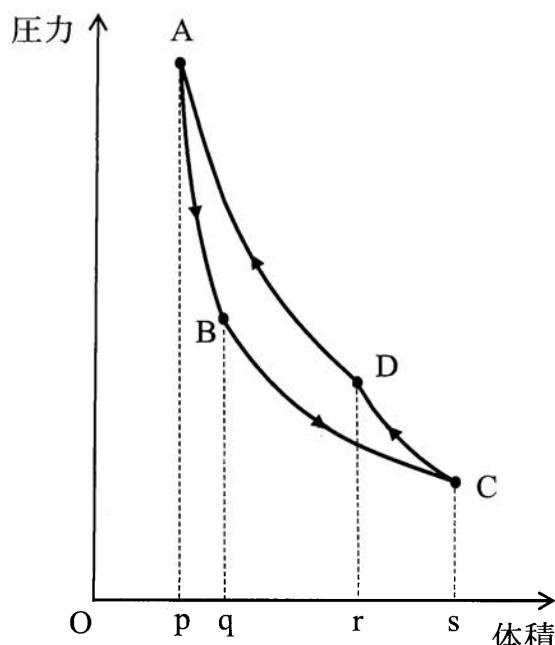


図3

3

図1のように、荷電粒子Aを電場（電界）で加速し磁場（磁界）で進行方向を曲げて、ターゲットとなる物体Tに衝突させる装置がある。装置は真空中にあり、荷電粒子Aは質量が m 、電気量が q ($q > 0$) で、物体Tは質量が M 、電気量が Q ($Q > 0$) である。

はじめ、荷電粒子Aは平行極板の正の極板の位置に静止しており、電位差が V である平行極板間の一様電場から静電気力を受けて運動し、極板の小さな穴から光速より十分小さい速さ v で射出される。その後、磁束密度 B の一様磁場の領域において半径 r で進行方向を 90° 曲げられ、磁場の領域の外に出て物体Tに向かって直進する。荷電粒子Aの運動は、紙面にそった平面のみに限定されている。

平行極板は、極板の大きさに比べて間隔 d が十分小さく、極板の穴も十分小さい。また、一様磁場の領域外での磁場はなく、漏れ出した磁場の影響も無視できる。さらに、電磁波および重力、平行極板と一様磁場の領域での物体Tの電荷の影響は無視できるものとする。クーロンの法則の比例定数を k_0 とし、静電気力による位置エネルギーの基準を無限遠とする。

次の問1～問5に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

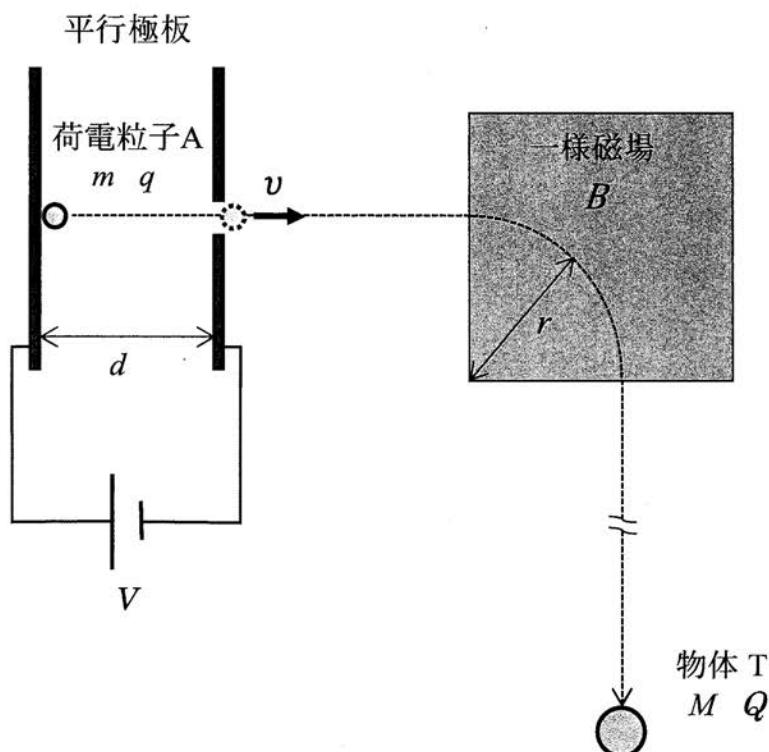


図1

問1 荷電粒子Aは、平行極板間の一様電場から静電気力を受けて等加速度直線運動をした。

- (a) 一様電場の強さ E を、 V , d を用いて表せ。
- (b) 加速度の大きさ a を、 m , q , V , d を用いて表せ。

問2 極板の穴から射出された直後の荷電粒子Aの速さ v を、 m , q , V を用いて表せ。

問3 一様磁場によって、荷電粒子Aが進行方向を 90° 曲げられたときの磁束密度 B を、 m , q , v , r を用いて表せ。また、磁場の向きは、紙面に対して、〔① 奥から手前、② 手前から奥〕、のいずれかを、①、②で答えよ。

問4 一様磁場によって、荷電粒子Aが進行方向を 90° 曲げられた前後について、荷電粒子Aの運動エネルギーと運動量について考える。

- (a) 運動エネルギーは変化しないが、その理由を簡潔に説明せよ。
- (b) 運動量の変化の大きさを、 m , v を用いて表し、運動量の変化の向きを、はじめの進行方向からの角度で答えよ。

問5 図2のように、物体Tを動かないように固定し、荷電粒子Aを物体Tの中心に向かって直進させ衝突させた。物体Tは半径Rの球形で電荷は中心に集中しており、荷電粒子Aの大きさは無視できるものとする。荷電粒子Aが物体Tに衝突するための速さvの最小値uを、 m 、 q 、 M 、 Q 、 R 、 k_0 から必要なものを用いて表せ。

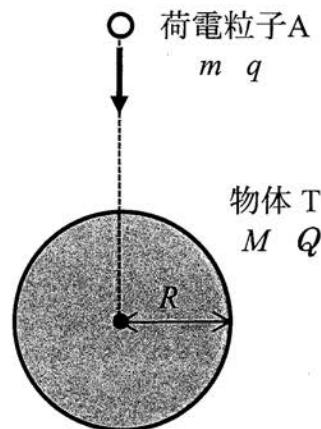


図2

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 2＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
医学部保健学科 看護学専攻	13:00～14:20 (80 分)	12 ページ

B12346

——このページは白紙——

——このページは白紙——

1 次の〔I〕, 〔II〕の文章を読み, 以下の問(1)~(6)に答えよ。

〔I〕 全ての染色体は複製起点と呼ばれる領域を持っており, タンパク質の複合体が複製起点内部にある特異的な DNA 配列を認識すると, 結合が起こる。その結果, 複製が DNA に沿って両方向に進行していく。複合体中の DNA ポリメラーゼは新しいヌクレオチドを既存の鎖に連結することでポリヌクレオチド鎖を伸長させる。しかし, この過程はプライマーと呼ばれる短いヌクレオチド鎖がなければ始まらない。ほとんどの生物でこのプライマーは短い 1 本鎖の ア である。

次に DNA ポリメラーゼがプライマーの 3'末端にヌクレオチドを付加していき, DNA の当該領域の複製が完了するまで新しい鎖は伸長を続ける。その後プライマーは分解されてその部位に DNA が付加され, 形成された DNA 断片は別の酵素の働きで連結される。なお, DNA ポリメラーゼは 5'→3' 方向にだけヌクレオチド鎖を伸長することができる。そこで, DNA の 2 本鎖のうち一方の鑄型鎖は, DNA がほどけていく方向に, 連続的に新生鎖が伸長していく。この鎖を イ 鎖と呼ぶ。

もう一方の鑄型鎖は逆向きにしか新生鎖を伸長できない。そこで, DNA がほどけて, ある程度 1 本鎖の部分が長くなると, プライマーが合成された後, DNA ポリメラーゼが, DNA のほどけていく方向とは逆方向に新生鎖を伸長して DNA の断片をつくる。できた断片は ウ という酵素によって, すでにつくられた断片とつながれる。このように, 断片がつくれながら不連続に複製されて新しくできた鎖を エ 鎖という。DNA 複製の過程でつくられる エ 鎖の断片は, 発見者にちなんで オ と呼ばれている。

〔II〕 実験室で DNA を調べたり遺伝子操作を実施したりするためには, DNA 配列のコピーを大量に合成することが必要になる。この DNA の増幅技術を PCR 法という。この方法の主な反応混合物は以下の①~⑤である。

- ① 鑄型として働く 2 本鎖 DNA
- ② 増幅対象となる DNA 配列の両末端に相補的な 2 つのプライマー
- ③ 4 種類のヌクレオチド
- ④ (a) DNA ポリメラーゼ
- ⑤ 適切な塩濃度とともに中性に近い pH を維持するための緩衝液

PCR 法の過程は以下の (i) ~ (iii) を繰り返す。

- (i) 反応混合物を約 95 ℃ に加熱する。
- (ii) 次に約 60 ℃ に温度を下げる。
- (iii) 次に約 72 ℃ にする。

これらを繰り返すことで、目的とする DNA 断片を増幅することができる。

問 (1) 上記の文章の [ア] ~ [オ] に適切な語句を記入せよ。

問 (2) DNA の複製方法には以下の 3 つの仮説が考えられていた。

仮説 1 もとの 2 本鎖 DNA はそのまま残り、新たな 2 本鎖 DNA ができる保存的複製

仮説 2 もとの 2 本鎖 DNA のそれぞれの鎖を鑄型として、新たなヌクレオチド鎖が合成される半保存的複製

仮説 3 もとの 2 本鎖 DNA は分解され、もとの DNA 鎖と新しい DNA 鎖が混在する 2 本鎖 DNA ができる分散的複製

メセルソンとスタールは 1958 年に下記のような実験を行った。

- ① 大腸菌に $^{15}\text{NH}_4\text{Cl}$ を栄養分として与えると、 ^{15}N からなる塩基を持つ重い DNA ができる。
- ② 大腸菌の窒素がほとんど ^{15}N におきかわったところで、 $^{14}\text{NH}_4\text{Cl}$ を含む培地に移して大腸菌をさらに増殖させた。
- ③ 1 回、2 回と分裂を繰り返した菌から DNA を抽出し、遠心分離によってその比重を調べた。

この実験からどのような結果が出て、どの仮説が正しいことが証明されたのか、5 行以内で説明せよ。

問 (3) [II] で述べた PCR 法を用いて, 1500 塩基対の DNA 分子の中に存在する DNA 領域を, プライマーA とプライマーB を用いて増幅することにした。プライマーA の 5'末端は鑄型となる DNA の 250 塩基内側に, プライマーB の 5'末端は鑄型となる DNA の 150 塩基内側に結合する。この DNA 分子を PCR 法で n 回増幅させたら, 1100 塩基対からなる目的とする 2 本鎖の DNA 領域は理論的には何本得られるか, n で表せ。

問 (4) 通常の PCR 法で用いるプライマーは 20 塩基程度とされている。なぜ 20 塩基より少なすぎても, 多すぎてもいけないのか, 2 行以内で説明せよ。

問 (5) PCR 法で用いる下線部 (a) の DNA ポリメラーゼは一般的な酵素とはどのような点で異なっているか, 1 行で説明せよ。

問 (6) DNA の塩基対では A (アデニン) と T (チミン) の対と G (グアニン) と C (シトシン) の対ではどちらの結合が, どういう理由で強いのか, 2 行以内で説明せよ。

2 次の〔I〕～〔III〕の文章を読み、以下の問(1)～(5)に答えよ。

〔I〕 筋肉は円筒状で多核の筋細胞からできている。筋細胞の細胞質にはサルコメアという収縮単位が縦に連なった纖維がつまっている。サルコメアではミオシンフィラメントとアクチンフィラメントが交互に規則正しく配列している。サルコメアはATPを分解する際に発生するエネルギーでミオシンフィラメントとアクチンフィラメントの相対的な滑り運動で収縮する。筋肉の収縮・弛緩は筋細胞内のカルシウムイオンによって調節される。カルシウムイオンは筋小胞体に蓄えられており、収縮時には細胞質に放出され、トロポニンに結合する。(a)トロポニンはカルシウムイオンを結合すると、アクチンフィラメントとミオシンフィラメントとの相互作用を開始させる。弛緩時にはカルシウムイオンは再び筋小胞体に取り込まれ、ミオシンフィラメントとアクチンフィラメントの相互作用が断たれる。

〔II〕 骨格筋の収縮は運動神経によって制御されている。運動神経は、その末端で筋纖維と狭いすきまを隔てて連絡している。この部分をアという。このアで神経伝達物質として使われているアセチルコリンはナトリウムイオンなどを通過させるイオンチャネルを開かせて、筋細胞の興奮を引き起こす。脊椎動物の骨格筋を取り出し、それに接続する神経を1回刺激すると短い潜伏期の後、0.1秒ほどの収縮が起こる。このような単一の収縮を単収縮という。この刺激を1秒間に50回与えると、一続きの大きな収縮がみられるようになり、この収縮をイという。通常の骨格筋で起こる収縮はイである。

〔Ⅲ〕 筋収縮は大量の ATP を消費する。したがって、収縮を持続するためには ATP を補充しなければならない。その代表的な物質が骨格筋に多く蓄えられている高エネルギー酸化合物である **ウ** である。**ウ** は酵素の働きで **エ** になり、これに伴って ADP が ATP になる。

骨格筋細胞は血中のグルコースを取り込み **オ** として大量に蓄えている。運動時には交感神経とアドレナリンの作用により **オ** の分解が進み、グルコースを生じる。グルコースは解糖系によりピルビン酸に分解され、その過程で 1 分子のグルコースあたり 2 分子の ATP を作る。

以上の反応は酸素を必要としないため、酸素供給の乏しい場合に利用される。ATP 供給は速やかであるが、短時間で枯渇し、**エ** や **カ** が細胞内に蓄積する。**カ** は血中に拡散し、肝臓に運ばれて再びグルコースに合成される。

運動中は心拍の増加と骨格筋における血管の拡張により筋肉の血流量が増し、酸素の供給も増加する。このような条件ではピルビン酸は細胞小器官のミトコンドリアに入り、クエン酸回路や電子伝達系を経て ATP が合成される。

問 (1) 上記の文章の **ア** ~ **カ** に適切な語句を記入せよ。

問 (2) 下線部 (a) でトロポニンがカルシウムイオンと結合すると、どのような変化が起こり、アクチンフィラメントとミオシンフィラメントの相互作用が開始されるのか、4 行以内で説明せよ。

問 (3) カエル筋纖維のサルコメアの長さを変えて、張力を測ると図 1 のようになった。このことから予想されるサルコメアの長さ $2.2 \mu\text{m}$ の時の模式図を書け（ミオシンフィラメントとアクチンフィラメントの位置関係を明らかにすること）。

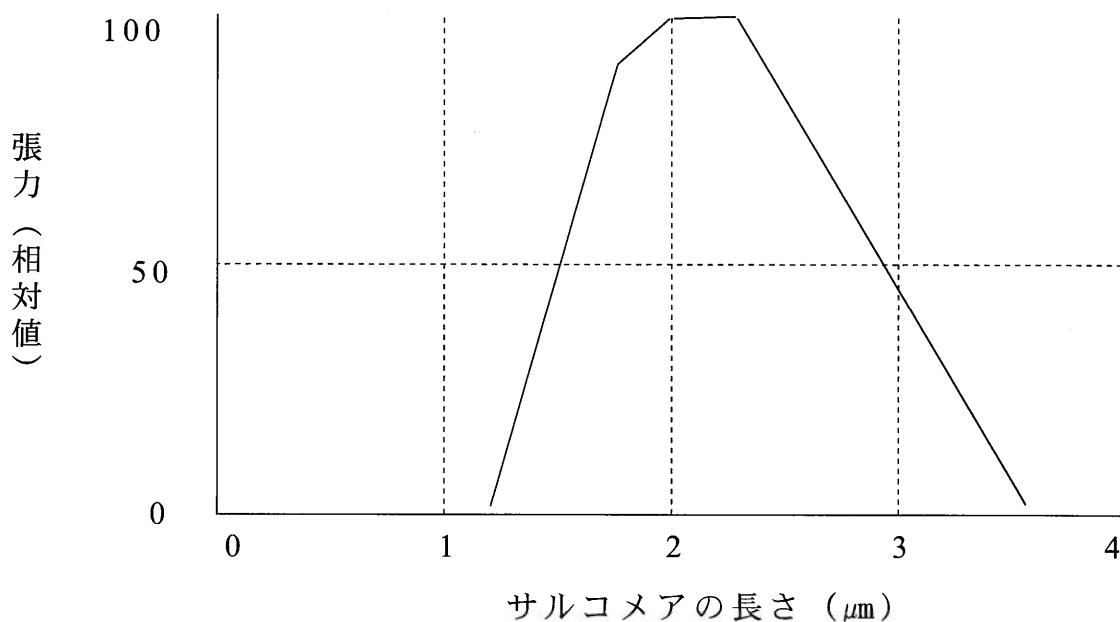


図 1

問 (4) カエルのふくらはぎの筋肉と神経が接する点から 20 mm 離れた A 点と 80 mm 離れた B 点を 1 回だけ刺激したところ、A 点では刺激から 6.3 ミリ秒 後に、B 点の刺激では刺激から 8.4 ミリ秒 後に筋肉の単収縮が記録された。この神経における興奮の伝導速度 (m/秒) を小数第 2 位を四捨五入して答えよ。

問 (5) 呼吸の電子伝達系において ATP がつくられるしくみを以下のキーワードをすべて使用して、5 行以内で説明せよ。

＜キーワード＞

ミトコンドリア、マトリックス、膜間、電子、ATP 合成酵素、水素イオン、タンパク質複合体、NADH、エネルギー

3 次の〔I〕～〔III〕の文章を読み、以下の問(1)～(6)に答えよ。

〔I〕 オオムギの種子などは主にデンプンを含む大きなアをもつ。このような種子においては、胚で生産されたジベレリンが、アを囲むように存在する糊粉層こふんそうに対して分泌され、アミラーゼなどの酵素の生産を誘導する。こうして生産されたアミラーゼはアに含まれるデンプンを分解し、発芽後の芽生えの成長エネルギー源として利用される。

オオムギの種子を半分に切ると、胚を含んだ側はアミラーゼの誘導が観察され、胚を含まない側はアミラーゼが誘導されない。したがって、胚がジベレリンの供給源であることがわかる。

(a) ジベレリンを有する巨大分子に結合させた化合物は、細胞膜を通過できないが、これを糊粉層の細胞のプロトプラスト（細胞壁を取り除いた細胞）に作用させると、アミラーゼの生産を促すことができる。しかし、ジベレリンを糊粉層のプロトプラスト内に注入しても、アミラーゼの誘導は観察されない。

〔II〕 頂芽優勢はオーキシンとサイトカイニンによって制御されている。頂芽優勢に関しては以下の①～⑤の実験結果が得られている。

- ① 頂芽を切除すると、切り口に近い側芽が成長を開始する。
- ② 頂芽の切り口にオーキシンを与えると、頂芽優勢が維持され、側芽の成長は抑制される。
- ③ 頂芽切除後、側芽に直接オーキシンを与えた場合は、頂芽優勢は維持されず、側芽は成長を開始する。
- ④ 頂芽を切除しなくても、オーキシンの(b)極性移動を阻害する物質を茎に与えると、それより下位の側芽は成長を開始する。
- ⑤ 頂芽を切除しなくても、サイトカイニンを直接側芽に与えると、側芽は成長を開始する。

〔Ⅲ〕 多くの植物では花芽形成は日長による制御を受けている。

連続した暗期が **イ** より短いと花芽が形成される植物は長日植物と呼ばれ、 **イ** より長いと花芽が形成される植物は短日植物と呼ばれている。一方、日長時間に関係なく花芽が形成される植物を **ウ** と呼ぶ。

花芽の形成は日長時間を感知した葉で花成ホルモンがつくられ、これが茎頂分裂組織に移動することにより花芽が形成されると考えられている。

シロイヌナズナの変異体による研究で花成ホルモンに関する遺伝子として *FT* 遺伝子が同定された。日長を感知した葉で *FT* タンパク質が合成され、 (c)この *FT* タンパク質が師管を通して 茎頂分裂組織に移動し、花芽が形成される。

問 (1) 上記の文章の **ア** ~ **ウ** に適切な語句を記入せよ。

問 (2) 種子が休眠することの 2 つの意義について、2 行以内で説明せよ。

問 (3) 下線部 (a) のような現象がなぜ起こるのか、1 行で説明せよ。ただし、ある巨大分子だけではアミラーゼの誘導に関与しないことがわかっている。

問 (4) 〔Ⅱ〕の実験結果から、頂芽優勢はどのようなしくみで起こると考えられているか、3 行以内で説明せよ。

問 (5) 下線部 (b) のオーキシンの極性移動のしくみについて、3 行以内で説明せよ。

問 (6) 下線部 (c) の *FT* タンパク質はどのような働きをするのか、2 行以内で説明せよ。

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験③問題

令和 5 年 11 月 4 日

志願学部／学科	試験時間	ページ数
医学部 保健学科 歯学部 農学部	15:20~16:50 (90 分)	13 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 13 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がない場合は、日本語で答えてください。
- 日本語での字数の指定がある場合は句読点、数字、アルファベット、記号も 1 字として数えてください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」は持ち帰ってください。

——このページは白紙——

C2346

2

274

——このページは白紙——

C2346

1 次の英文を読んで、以下の問い合わせに答えなさい。

Falling birth rates are a major concern for some of Asia's biggest economies. Governments in the region are spending hundreds of billions of dollars trying to reverse the trend. Will it work? Japan began introducing policies to encourage couples to have more children in the 1990s. South Korea started doing the same in the 2000s, while Singapore's first *fertility policy dates back to 1987. China, which has seen its population fall for the first time on 60 years, recently joined the growing club. While it is difficult to quantify exactly how much these policies have cost, South Korean President Yoon Suk-yeol recently said his country had spent more than \$200 billion (£160 billion) over the past 16 years on trying to boost the population. Yet last year South Korea broke its own record for the world's lowest fertility rate, with the average number of babies expected per woman falling to 0.78. (1) In neighbouring Japan, which had record low births of fewer than 800,000 last year, Prime Minister Fumio Kishida has *pledged to double the budget for child-related policies from 10 trillion yen, which is just over 2% of the country's gross domestic product. Globally, while there are more countries that are trying to lower birth rates, the number of countries wanting to increase fertility has more than tripled since 1976, according to the most recent report by the United Nations.

So why do these governments want to grow their populations? Simply put, having a bigger population who can work and produce more goods and services leads to higher economic growth. And while a larger population can mean higher costs for governments, it can also result in bigger tax *revenues. Also, many Asian countries are ageing rapidly. Japan leads the pack with nearly 30% of its population now over the age of 65 and some other nations in the region are not far behind. Compare that with India, which has just overtaken China as the world's most populous nation. More than a quarter of its people are between the age of 10 and 20, which gives its economy huge potential for growth. And when the share of the working age population gets smaller, the cost and burden of looking after the non-working population grow. "Negative population growth has an impact on the economy, and combined that with an ageing population, they won't be able to afford to support the elderly," said Xiujian Peng of Victoria University.

Most of the measures across the region to increase birth rates have been similar: payments for new parents, *subsidised or free education, extra nurseries, *tax incentives and expanded parental leave. But do these measures work? Data for the last few decades from Japan, South Korea and Singapore shows that attempts to boost their populations have had very little impact. Japan's finance ministry has published a study

which said the policies were a failure. It is a view echoed by the United Nations. “We know from history that the types of policies which we call demographic engineering where they try to incentivise women to have more babies, they just don't work,” Alanna Armitage of United Nations Population Fund told the BBC. “We need to understand the underlying determinants of why women are not having children, and that is often the inability of women to be able to combine their work life with their family life,” she added. But in Scandinavian countries, fertility policies have worked better than they did in Asia, according to Ms Peng. “The main reason is because they have a good welfare system and the cost of raising children is cheaper. Their gender equality is also much more balanced than in Asian countries.” Asian countries have ranked lower in comparison in the global gender gap report by the World Economic Forum.

There are also major questions over how these expensive measures should be funded, especially in Japan, which is the world's most *indebted developed economy. Options under consideration in Japan include selling more government bonds, which means increasing its debt, raising its sales tax or increasing *social insurance premiums. The first option adds financial burden to the future generations, while the other two would hit already struggling workers, which could convince them to have fewer children. But Antonio Fatás, professor of economics at *INSEAD says regardless of whether these policies work, they have to invest in them. “Fertility rates have not increased but what if there was less support? Maybe they would be even lower,” he said. (2) Governments are also investing in other areas to prepare their economies for shrinking populations. “China has been investing in technologies and innovations to make up for the declining labour force in order to mitigate the negative impact of the *shrinking population,” said Ms Peng. Also, while it remains unpopular in countries like Japan and South Korea, lawmakers are discussing changing their immigration rules to try to *entice younger workers from overseas. “Globally, the fertility rate is falling so it'll be a race to attract young people to come and work in your country,” Ms Peng added. Whether the money is well spent on fertility policies, these governments appear to have no other choice.

(出典：“Asia is spending big to battle low birth rates — will it work?” June 6, 2023, BBC より一部改変)

from BBC News at bbc.co.uk/news

*fertility : 出生率

*pledge : 約束する

*revenue : 歳入

*subsidise : 補助金を与える

*tax incentives : 税制優遇措置

*indebted : 負債がある

*social insurance premiums : 社会保険料

*INSEAD : 欧州経営大学院

*shrink : 減る

*entice : 呼び込む

問1 下線部(1)を日本語に訳しなさい。

問2 アジア諸国と比べ、スカンジナビア諸国で少子化対策が成功している理由は何か、本文に即して説明しなさい。

問3 下線部(2)の具体例としてあげられているものを、本文に即して説明しなさい。

問4 以下の(a)～(d)のうち、本文の内容から正しいと判断できるものを一つ選び記号で答えなさい。

- (a) 1976年以来、世界的に出生率の向上を望む国は3倍以上に増加している。
- (b) 世界で最も人口の多い国は中国である。
- (c) 税制優遇措置は、日本では人口増加に効果があった。
- (d) 国債の売却は、すでに苦しい状況にある労働者に打撃を与える。

——このページは白紙——

C2346

2 次の英文を読んで、以下の問い合わせに答えなさい。
([1]～[3]はそれぞれ段落番号を表す。)

[1] The traces of genetic material that humans constantly shed wherever they go could soon be used to track individual people, or even whole ethnic groups, scientists said on Monday, warning of a *looming “ethical *quagmire.”

[2] A recently developed technique can glean a huge amount of information from tiny samples of genetic material called (1)environmental DNA, or eDNA, that humans and animals leave behind everywhere — including in the air. The tool could lead to a range of medical and scientific advances, and could even help track down criminals, according to the authors of a new study published in the journal *Nature Ecology & Evolution*. But it also poses a vast range of concerns around consent, privacy and surveillance, they added. Humans spread their DNA — which carries genetic information specific to each person — everywhere, by shedding skin or hair cells, coughing out droplets, or in wastewater flushed down toilets. In recent years, scientists have been increasingly collecting the eDNA of wild animals, in the hopes of helping threatened species. For the new research, scientists at the University of Florida’s Whitney Laboratory for Marine Bioscience had been focused on collecting the eDNA of endangered sea turtles. But the international team of researchers inadvertently collected a massive amount of human eDNA, which they called “human genetic bycatch.” David Duffy, a wildlife disease genomic professor at the Whitney Laboratory who led the project, said they were “consistently surprised” by the amount and quality of the human eDNA they collected. “In most cases the quality is almost equivalent to if you took a sample from a person,” he said. (2)The scientists collected human eDNA from nearby oceans, rivers and towns, as well as from areas far from human settlements. Struggling to find a sample not *tainted by humans, they went to a section of a remote Florida island inaccessible to the public. It was free of human DNA — at least until a member of the team walked barefoot along the beach. They were then able to detect eDNA from a single footprint in the sand. In Duffy’s native Ireland, the team found human DNA all along a river, with the exception of the remote mountain stream at its source. Taking samples from the air of a veterinary hospital, the team captured eDNA that matched the staff, their animal patient and viruses common in animals.

[3] One of the study’s authors, Mark McCauley of the Whitney Laboratory, said that by sequencing the DNA samples, the team was able to identify if a person had a greater risk of diseases such as *autism and *diabetes. “All of this very personal, ancestral and health-related data is freely available in the environment, and it’s simply floating around us in the air right now,” McCauley told an online news conference. “We specifically did not examine our *sequences in a way that we would be able to pick out specific individuals

because of the ethical issues,” he said. But that would ⁽³⁾ “definitely” be possible in the future, he added. “The question is how long it takes until we’re at that stage.” The researchers emphasized the potential benefits of collecting human eDNA, such as tracking cancer *mutations in wastewater, discovering long-hidden archaeological sites or revealing the true *culprit of a crime using only the DNA they left in a room. Natalie Ram, a law professor at the University of Maryland not involved in the research, said the findings “should raise serious concern about genetic privacy and the appropriate limits of policing.” “Exploiting involuntarily shed genetic information for investigative aims risks putting all of us under *perpetual genetic surveillance,” she wrote in a commentary on the study. The authors of the study shared her concerns. McCauley warned harvesting human eDNA without consent could be used to track individual people or even target “vulnerable populations or ethnic minorities.” ⁽⁴⁾It is why the team decided to sound the alarm, they said in a statement, calling for policymakers and scientists to start working on regulation that could address such issues.

(Juliette Collen, “New threat to privacy? Scientists sound alarm about DNA tool”, The Japan Times, 2023/5/16, AFP-JIJI.一部改編)

*loom：迫る

*quagmire：泥沼

*taint：汚染する

*autism：自閉症

*diabetes：糖尿病

*sequence：配列

*mutation：突然変異

*culprit：犯罪者

*perpetual：永続的

問1 下線部 (1) の environmental DNA, or eDNA について, ① eDNA とは何か, また
② eDNA は何に役立つ可能性があるか, 段落[2]で述べられている内容に即して, それ
ぞれ30字程度で説明しなさい。

問2 下線部 (2) を日本語に訳しなさい。

問3 下線部 (3) について, 何が “definitely” be possible in the futureなのか, 本文に
即して説明しなさい。

問4 下線部 (4) の It が何を示しているか, 本文に即して説明しなさい。

——このページは白紙——

C2346

11

283

3 次の英文[I]と[II]を読んで、以下の問い合わせに答えなさい。

[I] The 19th century landscape paintings hanging in London's Tate Britain Museum looked awfully familiar to climate physicist Anna Lea Albright. Artist Joseph Mallord William Turner's signature way of *shrouding his *vistas in fog and smoke reminded Albright of her own research tracking air pollution.

"I started wondering if there was (1) a connection," says Albright, who had been visiting the museum on a day off from the Laboratory for Dynamical Meteorology in Paris. After all, Turner — a forerunner of the impressionist movement — was painting as Britain's industrial revolution gathered steam, and a growing number of *belching manufacturing plants earned London the nickname "The Big Smoke."

Turner's early works, such as his 1814 painting "Apulia in Search of Appullus," were rendered in sharp details. Later works, like his celebrated 1844 painting "Rain, Steam and Speed - the Great Western Railway," embraced a dreamier, *fuzzier aesthetic. Perhaps, Albright thought, this *burgeoning painting style wasn't a purely artistic phenomenon. Perhaps Turner and his successors painted exactly what they saw: their *environs becoming more and more obscured by *smokestack haze.

To find out how much realism there is in impressionism, Albright teamed up with Harvard University climatologist Peter Huybers, who's an expert in reconstructing pollution before instruments existed to closely track air quality. Their analysis of nearly 130 paintings by Turner, Paris-based impressionist Claude Monet and several others tells a tale of two modernizing cities.

Low contrast and whiter *hues are *hallmarks of the impressionist style. They are also hallmarks of air pollution, which can affect how a distant scene looks to the naked eye. (2) Tiny *airborne particles, or *aerosols, can absorb or scatter light. That makes the bright parts of objects appear dimmer while also shifting the entire scene's color toward neutral white.

The artworks that Albright and Huybers investigated, which span from the late 1700s to the early 1900s, decrease in contrast as the 19th century progresses. That trend tracks with an increase in air pollution, estimated from historical records of coal sales, Albright and Huybers report in (3) the Feb. 7 Proceedings of the National Academy of Sciences.

[II] Albright and Huybers distinguished art from aerosol by first using a mathematical model to analyze the contrast and color of 60 paintings that Turner made between 1796 and 1850 as well as 38 Monet works from 1864 to 1901. They then compared the findings to *sulfur dioxide emissions over the century, estimated from the trend in the annual amount of coal sold and burned in London and Paris. When sulfur dioxide reacts with molecules in the atmosphere, aerosols form.

"Our results indicate that [19th century] paintings capture changes in the *optical environment associated with increasingly polluted atmospheres during the industrial revolution," the researchers write. As sulfur dioxide emissions increased over time, the amount of contrast in both Turner's and Monet's paintings decreased. However, paintings of Paris that Monet made from 1864 to 1872 have much higher contrast than Turner's last paintings of London made two decades earlier.

The difference, Albright and Huybers say, can be attributed to the much slower start of the industrial revolution in France. Paris' air pollution level around 1870 was about what London's was when Turner started painting in the early 1800s. It confirms that the similar *progression in their painting styles can't be chalked up to coincidence, but is guided by air pollution, the pair conclude.

The researchers also analyzed the paintings' *visibility, or the distance at which an object can be clearly seen. Before 1830, the visibility in Turner's paintings averaged about 25 kilometers, the team found. Paintings made after 1830 had an average visibility of about 10 kilometers. Paintings made by Monet in London around 1900, such as "Charing Cross Bridge," have a visibility of less than five kilometers. That's similar to estimates for modern-day megacities such as Delhi and Beijing, Albright and Huybers say.

To strengthen their argument, the researchers also analyzed 18 paintings from four other London- and Paris-based impressionists. Again, as outdoor air pollution increased over time, the contrast and visibility in the paintings decreased, the team found. What's more, the decrease seen in French paintings lagged behind the decrease seen in British ones.

Overall, air pollution can explain about 61 percent of contrast differences between the paintings, the researchers calculate. In that respect, "different painters will paint in a similar way when the environment is similar," Albright says. "But I don't want to overstep and say: Oh, we can explain all of impressionism."

(Source: Bas den Hond, Science News, February 26, 2023. Used with permission.)

(注)

*shroud : 覆う	*vista : 風景	*belch : 吹き出す
*fuzzier : fuzzy (ぼやけた) の比較級		*burgeon : 芽生える
*environ : (…を) 取り巻く	*smokestack haze : 煙突の薄煙	
*hue : 色合い	*hallmark : 特徴的なこと	
*airborne : 空中の	*aerosol : エアロゾル	
*sulfur dioxide : 二酸化硫黄	*optical : 視覚の	
*progression : 発展, 進み	*visibility : 視程	

問1. 下線部(1)の a connection は何を指すか, [I] の内容に即して説明しなさい。

問2. 下線部(2)を日本語に訳しなさい。

問3. 下線部(3)の英文雑誌で報告されている研究成果に至る過程で Albright and Huybers はどのようなことを行ったか, [II] の内容に即して, 簡潔に 4 点説明しなさい。

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験①問題

令和 5 年 11 月 4 日

志願学部／学科／専攻	試験時間	ページ数
医学部 保健学科 放射線技術科学専攻 検査技術科学専攻	9:30~10:50 (80 分)	6 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 6 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

——このページは白紙——

A246

——このページは白紙——

A246

1

以下の問い合わせに答えよ。

(1) 1, 2, 3, 4, 5, 6 の目が等しい確率で出る 1 個のさいころを 3 回続けて投げる。出た目が連続する 3 つの数となる確率を求めよ。ただし、出る目の順番は問わない。

(2) $x > 1$ とする。次の不等式を満たす x の値の範囲を求めよ。

$$\log_3 x + \log_x 9 \leq \frac{9}{2}$$

(3) 次の定積分の値を求めよ。

$$\int_{-1}^1 |x(x+1)^2| dx$$

〔2〕 三角形 ABCにおいて、 $AB = 7$, $BC = 5$, $CA = 3$ とする。辺 BC を 4:1 に内分する点を D とする。頂点 B から直線 AC に垂線を引き、直線 AC との交点を E とする。 $\overrightarrow{AB} = \vec{b}$, $\overrightarrow{AC} = \vec{c}$ とするとき、次の問い合わせに答えよ。

- (1) 内積 $\vec{b} \cdot \vec{c}$ の値を求めよ。
- (2) 線分 AE の長さを求め、 \overrightarrow{AE} を \vec{c} を用いて表せ。
- (3) 三角形 ABC の面積を求めよ。
- (4) 点 E に関して点 C と対称な点を F とする。直線 AD と直線 BF との交点を G とするとき、三角形 BDG の面積を求めよ。

3

xy 平面上の曲線 $C_0 : x^2 - 2xy + y^2 - 3\sqrt{2}x + \sqrt{2}y = 0$ を原点の周りに $\frac{\pi}{4}$ だけ回転した曲線を C_1 とする。次の問い合わせに答えよ。

- (1) 点 $A(x, y)$ を原点の周りに $\frac{\pi}{4}$ だけ回転した点を $B(s, t)$ とする。 s, t をそれぞれ x, y を用いて表せ。
- (2) C_1 を表す x と y との関係式を求めよ。
- (3) C_0 の概形を xy 平面上に描け。
- (4) C_0 と x 軸とで囲まれた部分の面積を求めよ。

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験② 封筒

令和 5 年 11 月 4 日

志願学部／学科／専攻	試験時間	問題冊子数
医学部 保健学科	13:00~14:20	
放射線技術科学専攻	(80 分)	3 冊
検査技術科学専攻		

注意事項

- 試験開始の合図があるまで、この封筒を開いてはいけません。
- この封筒には、「問題冊子」3冊、「解答用紙」3種類、「メモ用紙」1冊が入っています。
- 筆記試験②は、＜必答問題1＞、＜選択問題1＞、＜選択問題2＞の3冊からなります。
※ 必答問題1の他に、＜選択問題1～2＞のうちから1つを選択し、解答してください。選択問題を選択しなかった場合は、失格となります。
※ ＜選択問題＞の解答用紙1枚目の所定の欄に、選択の有無を で囲んでください。

選択する場合：

<input checked="" type="checkbox"/> 選択する
<input type="checkbox"/> 選択しない

選択しない場合：

<input type="checkbox"/> 選択する
<input checked="" type="checkbox"/> 選択しない

- ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。問題冊子のホチキスは外さないでください。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」は1枚につき1か所の所定の欄に、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。選択しない問題の解答用紙にも受験記号番号を記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は、「解答用紙」は全て回収しますので持ち帰ってはいけません。
本封筒、「問題冊子」及び「メモ用紙」は持ち帰ってください。

令和 6 年度（2024 年度）東北大学
AO 入試（総合型選抜）Ⅱ期

筆記試験②

＜必答問題 1 ＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
医学部保健学科	13:00~14:20	
放射線技術科学専攻		15 ページ
検査技術科学専攻	(80 分)	

——このページは白紙——

——このページは白紙——

必要があれば次の数値を用いなさい。

気体定数: $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$

絶対零度: $-273 \text{ }^\circ\text{C}$

アボガドロ定数: $6.0 \times 10^{23} / \text{mol}$

ファラデー定数: $9.65 \times 10^4 \text{ C/mol}$

原子量: H = 1.0 Li = 6.9 C = 12.0 O = 16.0 Cl = 35.5 K = 39.1

1 気体の溶解に関する文〔I〕と文〔II〕を読んで、問1から問5に答えなさい。

〔I〕 体積を自由に変えることのできるピストン

付きの容器に、水 1.0 L と気体A 0.30 mol のみを入れて、気体Aと水を合わせた容器内の体積が 3.0 L になるように固定具でピストンを固定した（図1）。

実験のあいだ、容器の温度は常に $20 \text{ }^\circ\text{C}$ に保たれていた。気体Aの水への溶解はヘンリーの法則に従い、

$20 \text{ }^\circ\text{C}$ で水に接している $1.0 \times 10^5 \text{ Pa}$ の気体Aは、水 1.0 L に $3.9 \times 10^{-2} \text{ mol}$ 溶けることとする。気体Aは今回の実験における温度、圧力のもとで凝縮することではなく、理想気体としてふるまい、また、ピストンの質量、水の蒸気圧は無視する。

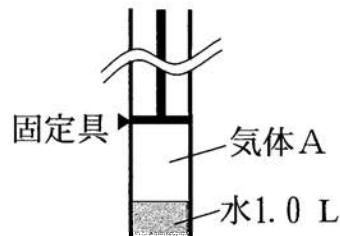


図1

問1 容器内の気体Aの圧力を P [Pa] として(1)から(3)に答えなさい。

(1) 水 1.0 L に溶解している気体Aの物質量 n_s [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。

$$n_s = \boxed{} \times P$$

(2) 水の上の空間に存在する気体Aの物質量 n_g [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。ただし、容器内の気体部分の体積は 2.0 L とし、気体定数 $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$ と絶対温度 293 K の積を $2.43 \times 10^6 \text{ Pa} \cdot \text{L}/\text{mol}$ として計算しなさい。

$$n_g = \boxed{} \times P$$

(3) P [Pa] の値を求め、その値を有効数字 2 桁で書きなさい。

問 2 溫度を 20°C に保ったまま、図 1 のピストンの固定をはずして自由に動く状態にしたところ、容器内の気体 A の圧力が容器にかかる大気圧 ($1.0 \times 10^5 \text{ Pa}$) と等しくなってピストンが止まった。この状態を状態 1 とする(図 2 左)。状態 1 で水に溶けている気体 A の物質量を $n_1 \text{ [mol]}$ とする。次に温度を 20°C に保ったまま、状態 1 のピストンにおもりを載せ、容器内の気体 A の圧力を $2.0 \times 10^5 \text{ Pa}$ とした状態を状態 2 とする(図 2 右)。状態 2 で水に溶けている気体 A の物質量を $n_2 \text{ [mol]}$ とする。(1) および(2) に答えなさい。ただし、固定をはずしたピストンは摩擦なく動くものとする。

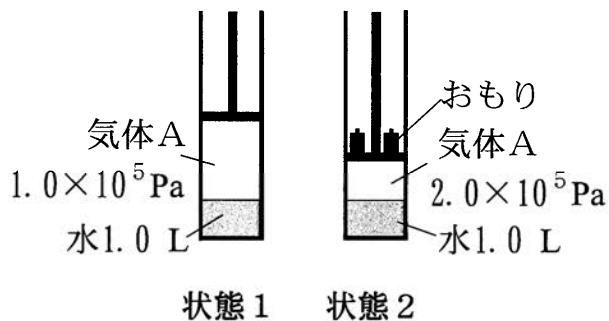
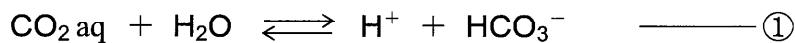


図 2


(1) $n_1 \text{ [mol]}$ の気体 A の体積を $1.0 \times 10^5 \text{ Pa}$ のもとで、 $n_2 \text{ [mol]}$ の気体 A の体積を $2.0 \times 10^5 \text{ Pa}$ のもとで測定したところ、それぞれ $V_1 \text{ [L]}$ 、 $V_2 \text{ [L]}$ であった。 V_1 と V_2 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積の測定はいずれも 20°C で行った。

① $2V_1 = V_2$ ② $V_1 = V_2$ ③ $V_1 = 2V_2$

(2) $n_1 \text{ [mol]}$ の気体 A と $n_2 \text{ [mol]}$ の気体 A の体積を同じ圧力のもとで測定したところ、それぞれ $V_3 \text{ [L]}$ 、 $V_4 \text{ [L]}$ であった。 V_3 と V_4 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積の測定はいずれも 20°C で行った。

① $2V_3 = V_4$ ② $V_3 = V_4$ ③ $V_3 = 2V_4$

[Ⅱ] 水を 25 °C, 1.0×10^5 Pa の空気中に十分に長く放置したところ、この水に空気中の二酸化炭素が溶け込み、水溶液となった。この水溶液を水溶液Bと呼ぶ。水溶液Bは二酸化炭素の溶解に関して平衡状態となっている。水に溶解した二酸化炭素を $\text{CO}_2 \text{ aq}$ とすると、 $\text{CO}_2 \text{ aq}$ のごく一部は炭酸 H_2CO_3 の生成を経由して次のように二段階で電離する。

25 °Cにおいて、一段目の反応①の電離定数は $K_1 = 4.5 \times 10^{-7}$ mol/L、二段目の反応②の電離定数は $K_2 = 4.7 \times 10^{-11}$ mol/L とする。

二酸化炭素の水への溶解についてはヘンリーの法則が成り立ち、25 °Cで 1.0×10^5 Pa の二酸化炭素は 1.0 L の水に 3.0×10^{-2} mol 溶けることとする。実験のあいだ空気の組成は一定で、二酸化炭素以外に水と反応する気体は空気中に存在しないこととする。また、水の電離は考慮しないこととする。

問3 実験に用いた空気中に二酸化炭素は体積の割合で 0.040% 存在した。 1.0×10^5 Pa の空気における二酸化炭素の分圧 [Pa] を求めて、その数値を有効数字2桁で書きなさい。

問4 水溶液B 1.0 L に二酸化炭素は何 mol 溶解しているか。数値を求めて有効数字2桁で書きなさい。ただし、二酸化炭素の溶解によって水の体積は変化しないこととする。

問5 水溶液BのpHに関連した次の(1)から(3)に答えなさい。ただし、 K_2 の値が非常に小さい二段目の反応②は無視することができ、水素イオン H^+ は一段目の反応①によってのみ生じることとする。

(1) 問4で求めた水溶液B 1.0 L に溶解している二酸化炭素の物質量を C [mol] とすると電離前の二酸化炭素のモル濃度は C [mol/L] となる。一段目の反応①の電離度を α ($0 < \alpha \leq 1$) としたとき、下の空欄 に C と α を用いた文字式を書き入れ、 K_1 を表す式③を完成させなさい。

$$K_1 = \frac{[\text{H}^+][\text{HCO}_3^-]}{[\text{CO}_2]} = \boxed{\quad} \quad \text{—— ③}$$

(2) ③式の K_1 と C に数値を代入して α を求めたところ、 $\alpha = 0.18$ であった。水溶液Bの水素イオン濃度 $[\text{H}^+]$ を求めて、次の式の空欄 にあてはまる数値を有効数字2桁で書きなさい。ただし、空欄 にあてはまる数値は1以上で、10より小さい。

$$[\text{H}^+] = \boxed{\quad} \times 10^{-6} \text{ mol/L}$$

(3) 水溶液BのpHは次のどの範囲にあると考えられるか。最も適切なものをアからオより1つ選んで解答欄の記号を○で囲みなさい。

ア 3.0から4.0の間	イ 4.0から5.0の間
ウ 5.0から6.0の間	エ 6.0から7.0の間
オ 7.0から8.0の間	

2

次の文章〔I〕, 〔II〕および〔III〕を読んで、問1から問8に答えなさい。

〔I〕 ある反応が進行するかどうかは、その反応の活性化エネルギーが正反応も逆反応も十分に速く起こるほど低い場合には、次の2つの要因によって決まる。なお、以下の文章では融解や溶解などの状態の変化も広義の反応に含めて述べる。

1つの要因は、反応物から生成物に変化する際の内部エネルギーの変化である。内部エネルギーとは、いま観察者が注目している部分（これを系という）がもつ全エネルギー、すなわち運動エネルギーや結合エネルギーの総和のことである。一般に内部エネルギーが小さいほどその系は安定である。この変化の過程で系の内部エネルギーが減少する場合には、系はその分のエネルギーを熱として系の外部に放出するので発熱反応となり、また生成物は反応物よりも安定になるので、反応は自発的に進行しやすい。逆に、系の内部エネルギーが増加する場合には、その分のエネルギーを系の外部から取り込むので吸熱反応となり、生成物は反応物よりも不安定になるので反応は進行しにくい。

もう1つの要因は、反応物から生成物に変化する際の系の乱雑さの変化である。反応によって系の乱雑さが増加する場合には、その反応は自発的に進行しやすいことが知られている。逆に、反応によって系の乱雫さが減少する場合には、その反応は進行しにくい。ここで、系の乱雫さが増加する変化とは、(a)固体から液体へ（融解）、液体から気体へ（気化）などの状態変化、(b)分離されていた2つの物質が均一に混じり合う変化（気体の混合、固体の溶媒への溶解など）、(c)化学反応において反応物より生成物の方が分子の数が増える変化などである。

ある反応において、上記2つの要因の効果が互いに強め合う場合には、反応は不可逆となり、自発的に進行するか、または全く進行しないかのどちらかとなる。一方、2つの要因の効果が互いに弱め合う場合には、反応は可逆となり、自発的に進行するかどうかは、その反応条件で2つの要因のどちらが大きいかによって決まる。たとえば、反応の進行に対して、反応による内部エネルギーの増加が与える効果が、乱雫さの増加が与える効果より大きければ、その反応は自発的には進行しないが、小さければ自発的に進行する。

問1 次の反応(ア)から(オ)は、それぞれ下の表の反応の分類AからDのどれにあてはまるか。解答欄にAからDの記号を記入しなさい。なお、これらの反応の最初と最後で系の温度は同じであるとする。

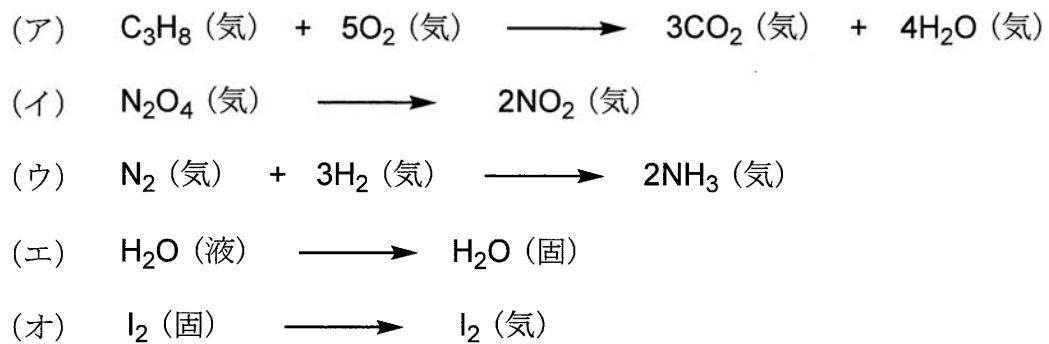


表 熱の出入りと乱雑さの変化による反応の分類

反応の分類	熱の出入り	乱雑さの変化
A	発熱	増加
B	吸熱	減少
C	発熱	減少
D	吸熱	増加

問2 KCl (固) の 25°C での水への溶解熱は -17.2 kJ/mol で吸熱反応であるが、自発的に進行する。その理由を「内部エネルギー」および「乱雑さ」という語句を用いて40~50字程度で説明しなさい。

〔II〕 塩化リチウムおよび塩化カリウムの結晶はいずれも塩化ナトリウム型構造（図1）をとっている。塩化リチウムおよび塩化カリウムの融点はそれぞれ $613\text{ }^{\circ}\text{C}$ および $776\text{ }^{\circ}\text{C}$ であるが、塩化リチウムと塩化カリウムを塩化リチウム : 塩化カリウム = 6:4 の物質量比で含む均一な混合物は、 $450\text{ }^{\circ}\text{C}$ では融解し液体となっている。この融解している塩、すなわち溶融塩を溶融塩 E とする。

溶融塩 E 100.0 g を $450\text{ }^{\circ}\text{C}$ に保ち、適切な材質の電極 X および電極 Y を挿入して電極 X と電極 Y との間に 3.6 V の電圧をかけたところ、電極 X 上にはリチウム単体（融点 $181\text{ }^{\circ}\text{C}$ ）が液体として生成し、電極 Y 上には塩素が気体として発生した。液体のリチウムの密度は溶融塩 E の密度よりも小さいため、生成したリチウムは溶融塩 E に浮かんでくるので、これを塩素と接触させないようにして集めることによりリチウム単体が得られた。なお、この電気分解の間に塩化カリウムは変化せず、また溶融塩 E は液体の状態を保っていたとする。

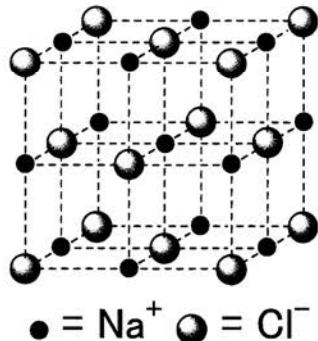


図1 塩化ナトリウム型構造

問3 塩化カリウム結晶の単位格子1個当たりの質量は何 g か。その数値を有効数字2桁で答えなさい。

問4 下線部において、電極 X および電極 Y のうち一方は陽極、もう一方は陰極である。(ア) 陽極上および(イ) 陰極上で起こる反応を、それぞれ電子(e^-)を含むイオン反応式で書きなさい。

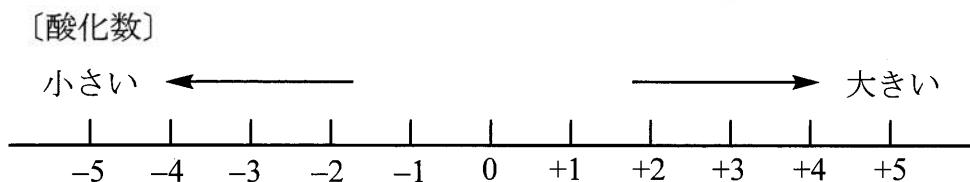
問5 電極 X と電極 Y との間に 5.0 A の一定電流が 2.0 時間流れたとすると、得られるリチウム単体の物質量は何 mol か。その数値を有効数字2桁で答えなさい。

〔III〕 (a) 酸化物には、水と反応させて水溶液としたときに、その水溶液が酸性を示すものから塩基性を示すものまで様々なものがある。また、水に溶けない酸化物でも、酸や塩基の水溶液と反応して溶けるものがある。たとえば、(b) 酸化アルミニウムは両性酸化物と呼ばれ、強酸とも強塩基とも反応して溶ける。また、二酸化ケイ素は常温ではほとんどの酸や塩基に対して安定であるが、(c) フッ化水素酸（フッ化水素の水溶液）とは反応して溶ける。

問6 下線部(a)に関連して、下の(ア)から(オ)に示す酸化物 0.1 mol を水 1 L に溶かし、得られた水溶液の pH を比べたとき、pH が最も低いもの、2番目に低いものおよび3番目に低いものを下の(ア)から(オ)の中からそれぞれ選び、それらの記号を pH が低い順に、左から右に列記しなさい。

(ア) BaO (イ) SO₃ (ウ) Na₂O (エ) P₄O₁₀ (オ) CO₂

問7 下線部(b)に関して、次の反応(1)および(2)のイオン式を含まない化学反応式をそれぞれ書きなさい。


- (1) 酸化アルミニウムと塩酸との反応
- (2) 酸化アルミニウムと水酸化ナトリウム水溶液との反応

問8 下線部(c)で起こる反応のイオン式を含まない化学反応式を書きなさい。

3

次の問1から問5に答えなさい。

問1 下図の酸化数の大小関係を参考にして、下の物質のグループ(1)から(4)のそれぞれの中で、指定した元素の酸化数が2番目に大きい物質中の指定した元素の酸化数を書きなさい。

(1) CH_4 CO_2 CO CaC_2 の中の炭素

(2) NH_3 NO_2 AgNO_3 NaNO_2 の中の窒素

(3) H_2O H_2O_2 CO O_2 の中の酸素

(4) NaClO Cl_2 NaCl KClO_3 の中の塩素

問2 工業的に二酸化硫黄を発生させる方法の一つは、黄鉄鉱の燃焼である。黄鉄鉱の主成分は FeS_2 であり、これは Fe^{2+} と S_2^{2-} からなるイオン性化合物である。

(a) FeS_2 を空気中で燃焼させると酸化鉄(Ⅲ)と二酸化硫黄が生成する。

(b) 二酸化硫黄を濃い水酸化ナトリウム水溶液に通すと、亜硫酸ナトリウムが生成する。

この亜硫酸ナトリウムは、実験室で二酸化硫黄を発生させるとときに試薬として用いられる。すなわち、(c) 亜硫酸ナトリウムに希硫酸を加えると二酸化硫黄が発生する。

下線部(a), (b) および(c) で起こる反応の、イオン式を含まない化学反応式を、

それぞれ解答欄に書きなさい。

問3 炭酸ナトリウム x [mol] と水酸化ナトリウム y [mol] を含む結晶の混合物がある。これをすべて水に溶かして 100.0 mL の水溶液とした。この水溶液を 10.0 mL ずつ 2 つの三角フラスコ A および B に入れた。三角フラスコ A にメチルオレンジを指示薬として加え、1.00 mol/L の塩酸で滴定したところ、気体の発生が観察され、また塩酸を 14.50 mL 加えたところで水溶液の色が変色した。

三角フラスコ B には、炭酸バリウムの白色沈殿が生じなくなるまで塩化バリウム水溶液を加えた。その後、この水溶液にフェノールフタレンを指示薬として加え、1.00 mol/L の塩酸で滴定したところ、10.50 mL 加えたところで水溶液の色が変色した。

次の(1)と(2)に答えなさい。

- (1) 三角フラスコ A 中で、炭酸ナトリウムと塩酸との間で起こった反応の、イオン式を含まない化学反応式を書きなさい。
- (2) 最初の結晶の混合物中の(a)炭酸ナトリウムの物質量 x [mol] および(b)水酸化ナトリウムの物質量 y [mol] を求め、その数値を有効数字 3 桁でそれぞれの解答欄に書きなさい。

問 4 示性式 C_4H_9OH で表されるアルコールの構造式を図 1 に示す。これらの中で、下の条件 (1) から (4) の各々に当てはまるアルコールを A から D の中から選び、その記号を解答欄に書きなさい。なお、それぞれの条件において、解答は 1 つとは限らない。

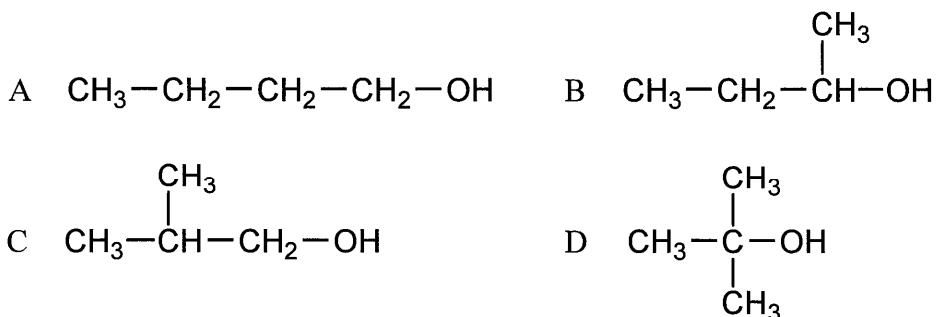
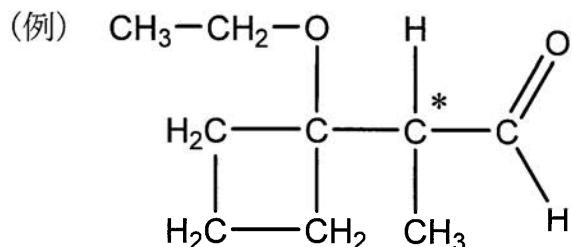



図1

- (1) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、ケトンを生成するアルコール
- (2) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、カルボン酸を生成するアルコール
- (3) 酸を加えて加熱し、分子内脱水反応を起こさせて生じるアルケンが、エチル基を含まないアルケンのみであるアルコール
- (4) ヨウ素と水酸化ナトリウム水溶液を加えて反応させると、 CHI_3 が主要生成物の 1 つとして生じるアルコール

問 5 次の指定された条件 (1) から (4) を満たす有機化合物のうち、不斉炭素原子を 1 個もつものの構造式を、それぞれ 1 つずつ書きなさい。不斉炭素原子には*印を付けなさい。構造式は下の例にならって書くこと。

- (1) 分子式 C_7H_{16} をもち 3 個の炭素と結合している炭素を 2 個含むアルカン
- (2) 分子式 $\text{C}_5\text{H}_{12}\text{O}$ をもつエーテル
- (3) 分子式 $\text{C}_5\text{H}_8\text{O}$ をもち四員環構造（4 個の原子からなる環状構造）をもつケトン
- (4) 分子式 $\text{C}_3\text{H}_6\text{O}_3$ をもつヒドロキシ酸

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 1 ＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
医学部 保健学科 放射線技術科学専攻 検査技術科学専攻	13:00～14:20 (80 分)	13 ページ

B2456

——このページは白紙——

——このページは白紙——

1

図1のように、表面のあらい円盤があり、円盤は軸を中心に回転装置で回転することができるようになっている。長さ ℓ の軽くて伸び縮みしない棒の一端に質量 m の小物体を取り付け、他端を円盤の軸になめらかに自由に動くことができるよう取り付けた。小物体と円盤との間の静止摩擦係数は μ 、動摩擦係数は μ' であり、棒と円盤との間に摩擦力ははたらかない。円盤は傾きを変えることができ、鉛直線と円盤の軸との間の角度（傾き角）を φ とする。円盤表面と円盤の軸の交点を原点 O として、水平方向に x 軸、傾いた斜面にそって下方に y 軸をとる。座標軸は円盤の回転とともに回転しないものとし、 y 軸と棒がなす角度を θ として円盤の軸を上から見て反時計回りを正の角度とする。重力の大きさを g とし、空気抵抗は無視できるものとする。角度はラジアンを用いて表す。

次の問1～問6に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

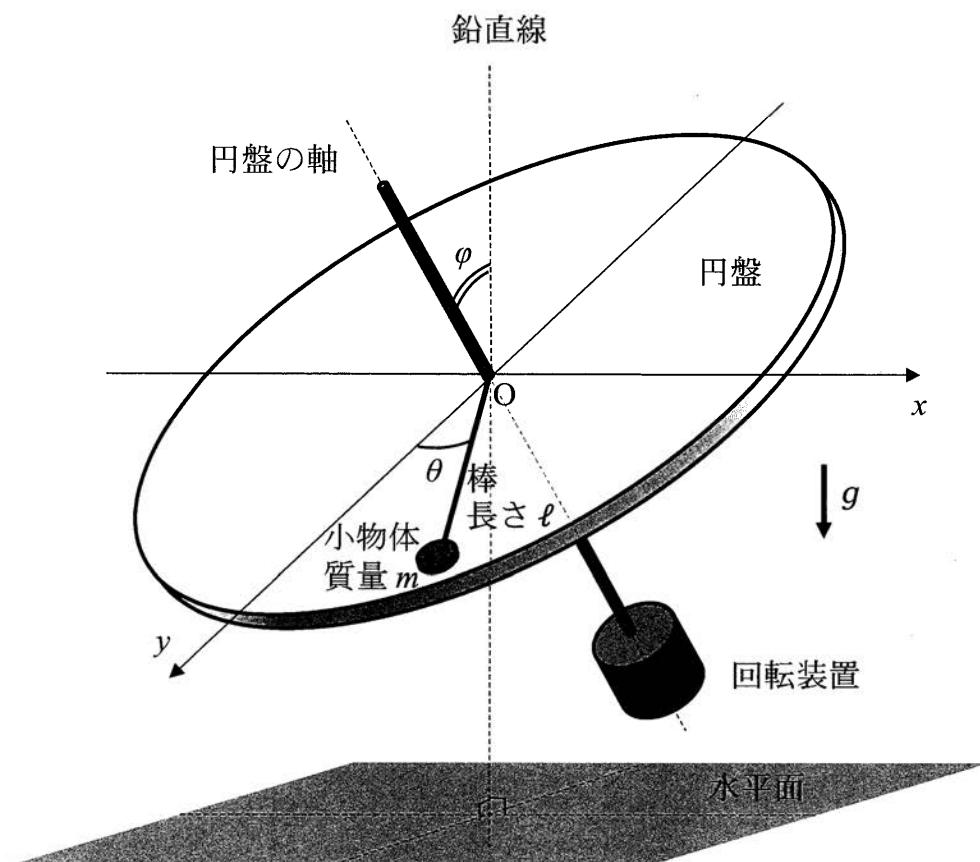


図1

※採点では、重力加速度の大きさを g として計算している解答も、論理的に間違が無ければ正解として扱った。

はじめに、円盤の傾き角を $\varphi = \frac{\pi}{2}$ とした。円盤は回転していない。

問1 図2のように、小物体を $\theta = \frac{2}{3}\pi$ の角度の位置から静かにはなすと、小物体は円盤の表面から離れることなく運動した。 $\theta = \frac{1}{3}\pi$ の角度の位置を通過するときに小物体が棒から受ける力の大きさ S を、 m ， g ， ℓ から必要なものを用いて表せ。また、その力の向きを答えよ。

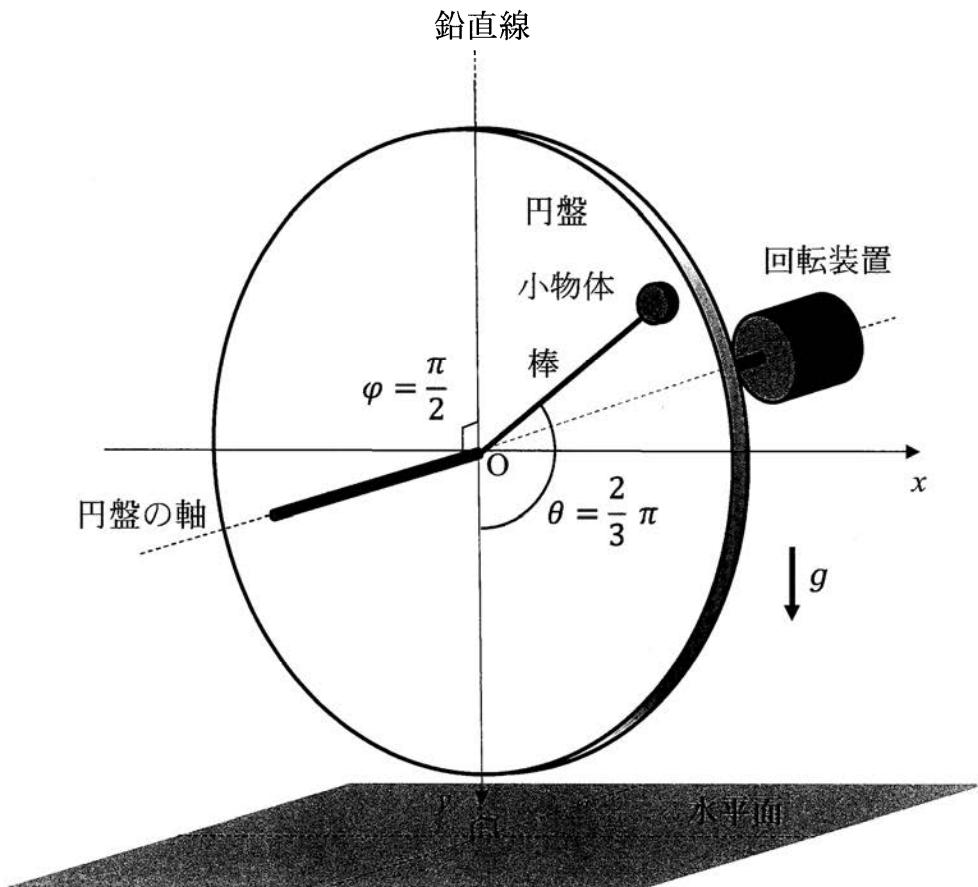


図2

問2 $|\theta|$ が十分小さい角度の位置から小物体を静かにはなしたとき、小物体は円盤の表面にそって $x = 0$ ， $y = \ell$ の点を中心 ℓ に比べて十分小さな振れ幅で振動した。このとき、小物体にはたらく力が復元力になることを示し、振動の角振動数 ω と周期 T を、 m ， g ， ℓ から必要なものを用いて表せ。

なお、必要であれば角度 α について、 $|\alpha|$ が十分小さいときに成り立つ近似式 $\sin \alpha \approx \tan \alpha \approx \alpha$ ， $\cos \alpha \approx 1$ を用いよ。

次に、円盤を水平にして傾き角を $\varphi = 0$ とした。円盤は回転していない。

問3 小物体を、棒から力を受けないようにして x 軸上の $x = \ell$ の位置に静かに置いた。その後、円盤の傾き角 φ をゆっくり大きくしていくと、傾き角が φ_0 になったときに小物体はすべりだした。静止摩擦係数 μ を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

問4 小物体がすべりだした直後、円盤の傾き角を φ_0 に保った。その後、小物体が θ $\left(0 \leq \theta < \frac{\pi}{2}\right)$ の角度の位置をはじめて通過する瞬間の、小物体の速さ v を、 m ， g ， φ_0 ， θ ， ℓ ， μ' から必要なものを用いて表せ。

問5 小物体は、 x 座標が負になることなく、ちょうど y 軸上の $y = \ell$ で静止した。 μ' を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

図3のように、円盤をさらに傾けて傾き角を φ_1 ($\varphi_0 < \varphi_1 < \frac{\pi}{2}$) で固定し、円盤を θ の正の向きに回転装置を用いて回転させた。その後、小物体を円盤上のある角度 θ_0 ($0 < \theta_0 < \frac{\pi}{2}$) の角度の位置に静かに置くと、小物体は円盤上をすべりながらその位置で静止した。

問6 このときの $\sin \theta_0$ と、小物体が棒から受ける力の大きさ S' を、 $m, g, \ell, \mu', \varphi_1$ から必要なものを用いて表せ。

図3

2

熱を低温部分から高温部分に継続的に移動する機関をヒートポンプといい、エアコンなどに応用されている。単原子分子理想気体を使った簡略化したモデルでその原理を考える。

図1のように、物質量 n の単原子分子理想気体（以下、気体と呼ぶ）を、なめらかに動かすことのできるピストンでシリンダー内に封じた。ピストンおよびシリンダーの側面は断熱されておりシリンダーの底面のみが熱を通す。断熱板、絶対温度 T_H の高温の物体、絶対温度 T_L の低温の物体があり、シリンダーを移動することで底面をこれらと接触させることができる。はじめにシリンダーの底面は断熱板と接触しており、気体の絶対温度は T_H であった。これを状態 A とする。シリンダーの移動とピストンの上下により、気体の状態を、図2の圧力-体積図（ $p-V$ 図）に示すように、状態 A→状態 B→状態 C→状態 D→状態 A と 1 サイクル変化させた。

温度は絶対温度で表し、気体定数を R 、気体の定積モル比熱を $\frac{3}{2}R$ とする。また、高温および低温の物体は十分大きな熱容量を持っており、温度は変わらないものとする。

次の問1～問5に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

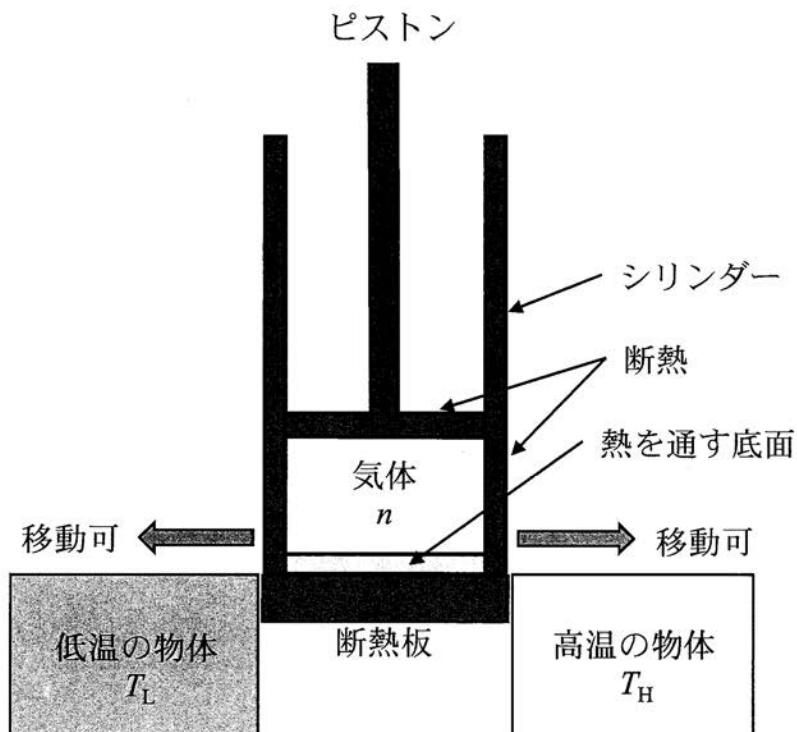


図1

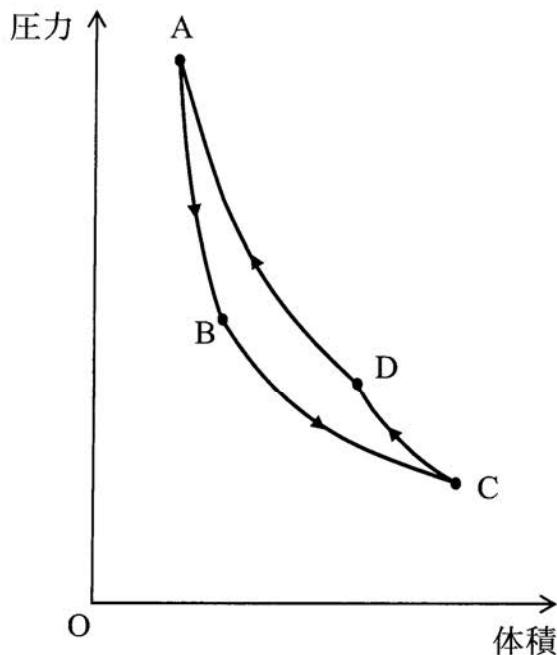


図 2

問 1 状態 A から、シリンダーの底面を断熱板に接触させたまま断熱変化でピストンをゆっくりと引き上げ、気体の温度が T_L の状態 B にした。内部エネルギーの変化 ΔU_{AB} と気体がされた仕事 W_{AB} を、 R ， n ， T_L ， T_H を用いて表せ。

問 2 次に、シリンダーを移動して底面を低温の物体に接触させ、等温変化でピストンをゆっくりと引き上げ、気体がされた仕事が W_{BC} になった状態 C でピストンを止めた。低温の物体から気体が受け取った熱量 Q_{BC} を、 W_{BC} を用いて表せ。

問 3 さらに、シリンダーの底面を断熱板上に再び移動し、断熱変化でピストンをゆっくりと押し込み、気体の温度が T_H の状態 D にした。このとき気体がされた仕事 W_{CD} を、問 1 の W_{AB} を用いて表せ。

問4 最後に、シリンダーの底面を高温の物体に接触させて、等温変化でピストンをゆっくりと押し込み、状態Aに戻した。このとき気体がされた仕事は W_{DA} であった。

この1サイクルで、高温の物体が気体から受け取った熱量 Q_h と、気体がされた仕事の総和 W ($W = W_{AB} + W_{BC} + W_{CD} + W_{DA}$) との比 $\frac{Q_h}{W}$ は、ヒートポンプを暖房機として使ったときの性能を表す係数となる。 $\frac{Q_h}{W}$ を、 W_{BC} 、 W_{DA} を用いて表せ。また、 $W > 0$ であることを用いて、(1) 1より大きい、(2) 1に等しい、(3) 1より小さい、のいずれかを、①～③で答えよ。

問5 Q_h と W は、圧力-体積図 ($p-V$ 図) の面積に対応する。 Q_h と W それについて、対応する面積を図3のA, B, C, D, p, q, r, s から必要なものを用いて、たとえば「ABqpで囲まれた面積」などのように表せ。

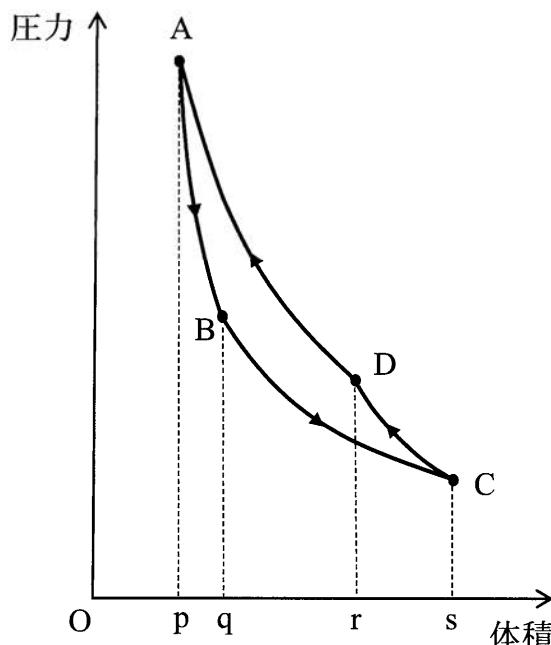


図3

3

図1のように、荷電粒子Aを電場（電界）で加速し磁場（磁界）で進行方向を曲げて、ターゲットとなる物体Tに衝突させる装置がある。装置は真空中にあり、荷電粒子Aは質量が m 、電気量が q ($q > 0$) で、物体Tは質量が M 、電気量が Q ($Q > 0$) である。

はじめ、荷電粒子Aは平行極板の正の極板の位置に静止しており、電位差が V である平行極板間の一様電場から静電気力を受けて運動し、極板の小さな穴から光速より十分小さい速さ v で射出される。その後、磁束密度 B の一様磁場の領域において半径 r で進行方向を 90° 曲げられ、磁場の領域の外に出て物体Tに向かって直進する。荷電粒子Aの運動は、紙面にそった平面のみに限定されている。

平行極板は、極板の大きさに比べて間隔 d が十分小さく、極板の穴も十分小さい。また、一様磁場の領域外での磁場はなく、漏れ出した磁場の影響も無視できる。さらに、電磁波および重力、平行極板と一様磁場の領域での物体Tの電荷の影響は無視できるものとする。クーロンの法則の比例定数を k_0 とし、静電気力による位置エネルギーの基準を無限遠とする。

次の問1～問6に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

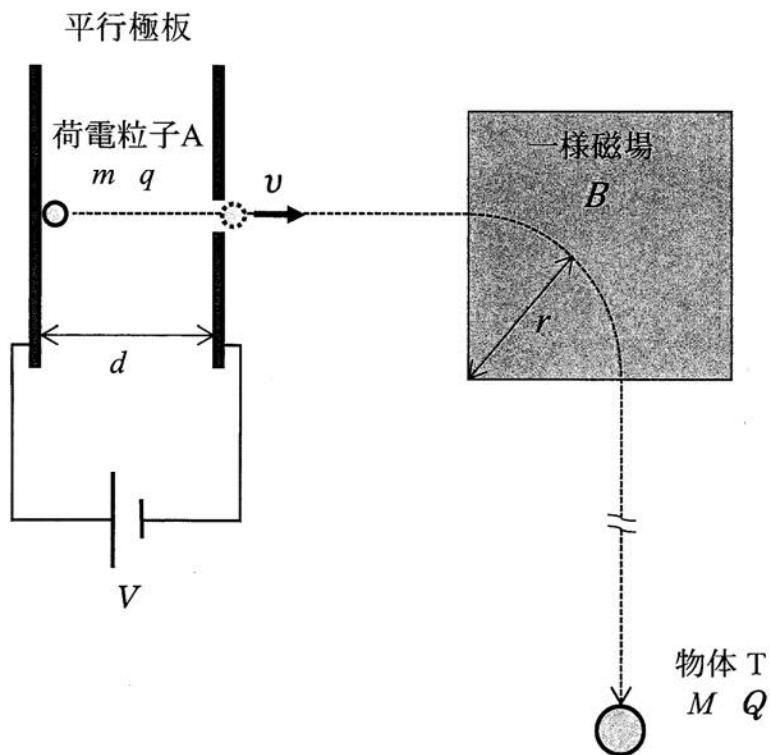


図1

問1 荷電粒子Aの、平行極板間における加速度の大きさ a を、 m , q , V , d を用いて表せ。

問2 極板の穴から射出された直後の荷電粒子Aの速さ v を、 m , q , V を用いて表せ。

問3 一様磁場によって、荷電粒子Aが進行方向を 90° 曲げられたときの磁束密度 B を、 m , q , v , r を用いて表せ。また、磁場の向きは、紙面に対して、〔① 奥から手前、② 手前から奥〕、のいずれかを、①, ②で答えよ。

問4 一様磁場によって、荷電粒子Aが進行方向を 90° 曲げられた前後について、荷電粒子Aの運動エネルギーと運動量について考える。

(a) 運動エネルギーは変化しないが、その理由を簡潔に説明せよ。

(b) 運動量の変化の大きさを、 m , v を用いて表し、運動量の変化の向きを、はじめの進行方向からの角度で答えよ。

図2のように、物体Tの中心に向かって荷電粒子Aが入射するように物体Tを置く。物体Tは半径Rの球形で電荷は中心に集中しており、荷電粒子Aの大きさは無視できる。

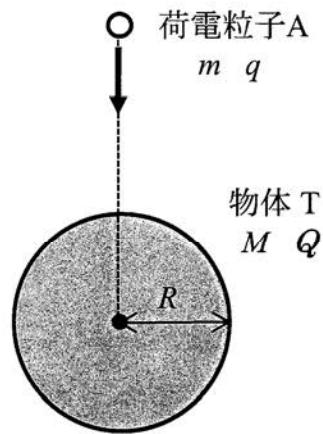


図2

問5 はじめに、物体Tを動かないように固定した状態で荷電粒子Aを衝突させた。荷電粒子Aが物体Tに衝突するための速さvの最小値uを、 m 、 q 、 R 、 M 、 Q 、 k_0 から必要なものを用いて表せ。

問6 次に、物体Tを固定せず自由に動くことができる状態で静止させて荷電粒子Aを衝突させた。荷電粒子Aが物体Tに衝突するための速さvの最小値を u' とするとき、問5のuとの比 $\frac{u'}{u}$ を、 m 、 M を用いて表せ。

令和 6 年度（2024 年度）東北大学

AO入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 2＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
医学部 保健学科 放射線技術科学専攻 検査技術科学専攻	13:00～14:20 (80 分)	12 ページ

B12346

——このページは白紙——

——このページは白紙——

1 次の〔I〕, 〔II〕の文章を読み, 以下の問(1)~(6)に答えよ。

〔I〕 全ての染色体は複製起点と呼ばれる領域を持っており, タンパク質の複合体が複製起点内部にある特異的な DNA 配列を認識すると, 結合が起こる。その結果, 複製が DNA に沿って両方向に進行していく。複合体中の DNA ポリメラーゼは新しいヌクレオチドを既存の鎖に連結することでポリヌクレオチド鎖を伸長させる。しかし, この過程はプライマーと呼ばれる短いヌクレオチド鎖がなければ始まらない。ほとんどの生物でこのプライマーは短い 1 本鎖の ア である。

次に DNA ポリメラーゼがプライマーの 3'末端にヌクレオチドを付加していき, DNA の当該領域の複製が完了するまで新しい鎖は伸長を続ける。その後プライマーは分解されてその部位に DNA が付加され, 形成された DNA 断片は別の酵素の働きで連結される。なお, DNA ポリメラーゼは 5'→3' 方向にだけヌクレオチド鎖を伸長することができる。そこで, DNA の 2 本鎖のうち一方の錆型鎖は, DNA がほどけていく方向に, 連続的に新生鎖が伸長していく。この鎖を イ 鎖と呼ぶ。

もう一方の錆型鎖は逆向きにしか新生鎖を伸長できない。そこで, DNA がほどけて, ある程度 1 本鎖の部分が長くなると, プライマーが合成された後, DNA ポリメラーゼが, DNA のほどけていく方向とは逆方向に新生鎖を伸長して DNA の断片をつくる。できた断片は ウ という酵素によって, すでにつくられた断片とつながれる。このように, 断片がつくれながら不連続に複製されて新しくできた鎖を エ 鎖という。DNA 複製の過程でつくられる エ 鎖の断片は, 発見者にちなんで オ と呼ばれている。

〔II〕 実験室で DNA を調べたり遺伝子操作を実施したりするためには, DNA 配列のコピーを大量に合成することが必要になる。この DNA の増幅技術を PCR 法という。この方法の主な反応混合物は以下の①~⑤である。

- ① 鑄型として働く 2 本鎖 DNA
- ② 増幅対象となる DNA 配列の両末端に相補的な 2 つのプライマー
- ③ 4 種類のヌクレオチド
- ④ (a) DNA ポリメラーゼ
- ⑤ 適切な塩濃度とともに中性に近い pH を維持するための緩衝液

PCR 法の過程は以下の (i) ~ (iii) を繰り返す。

- (i) 反応混合物を約 95 ℃ に加熱する。
- (ii) 次に約 60 ℃ に温度を下げる。
- (iii) 次に約 72 ℃ にする。

これらを繰り返すことで、目的とする DNA 断片を増幅することができる。

問 (1) 上記の文章の [ア] ~ [オ] に適切な語句を記入せよ。

問 (2) DNA の複製方法には以下の 3 つの仮説が考えられていた。

仮説 1 もとの 2 本鎖 DNA はそのまま残り、新たな 2 本鎖 DNA ができる保存的複製

仮説 2 もとの 2 本鎖 DNA のそれぞれの鎖を鑄型として、新たなヌクレオチド鎖が合成される半保存的複製

仮説 3 もとの 2 本鎖 DNA は分解され、もとの DNA 鎖と新しい DNA 鎖が混在する 2 本鎖 DNA ができる分散的複製

メセルソンとスタールは 1958 年に下記のような実験を行った。

- ① 大腸菌に $^{15}\text{NH}_4\text{Cl}$ を栄養分として与えると、 ^{15}N からなる塩基を持つ重い DNA ができる。
- ② 大腸菌の窒素がほとんど ^{15}N におきかわったところで、 $^{14}\text{NH}_4\text{Cl}$ を含む培地に移して大腸菌をさらに増殖させた。
- ③ 1 回、2 回と分裂を繰り返した菌から DNA を抽出し、遠心分離によってその比重を調べた。

この実験からどのような結果が出て、どの仮説が正しいことが証明されたのか、5 行以内で説明せよ。

問 (3) [II] で述べた PCR 法を用いて, 1500 塩基対の DNA 分子の中に存在する DNA 領域を, プライマーA とプライマーB を用いて増幅することにした。プライマーA の 5'末端は鑄型となる DNA の 250 塩基内側に, プライマーB の 5'末端は鑄型となる DNA の 150 塩基内側に結合する。この DNA 分子を PCR 法で n 回増幅させたら, 1100 塩基対からなる目的とする 2 本鎖の DNA 領域は理論的には何本得られるか, n で表せ。

問 (4) 通常の PCR 法で用いるプライマーは 20 塩基程度とされている。なぜ 20 塩基より少なすぎても, 多すぎてもいけないのか, 2 行以内で説明せよ。

問 (5) PCR 法で用いる下線部 (a) の DNA ポリメラーゼは一般的な酵素とはどのような点で異なっているか, 1 行で説明せよ。

問 (6) DNA の塩基対では A (アデニン) と T (チミン) の対と G (グアニン) と C (シトシン) の対ではどちらの結合が, どういう理由で強いのか, 2 行以内で説明せよ。

2 次の〔I〕～〔III〕の文章を読み、以下の問(1)～(5)に答えよ。

〔I〕 筋肉は円筒状で多核の筋細胞からできている。筋細胞の細胞質にはサルコメアという収縮単位が縦に連なった纖維がつまっている。サルコメアではミオシンフィラメントとアクチンフィラメントが交互に規則正しく配列している。サルコメアはATPを分解する際に発生するエネルギーでミオシンフィラメントとアクチンフィラメントの相対的な滑り運動で収縮する。筋肉の収縮・弛緩は筋細胞内のカルシウムイオンによって調節される。カルシウムイオンは筋小胞体に蓄えられており、収縮時には細胞質に放出され、トロポニンに結合する。(a)トロポニンはカルシウムイオンを結合すると、アクチンフィラメントとミオシンフィラメントとの相互作用を開始させる。弛緩時にはカルシウムイオンは再び筋小胞体に取り込まれ、ミオシンフィラメントとアクチンフィラメントの相互作用が断たれる。

〔II〕 骨格筋の収縮は運動神経によって制御されている。運動神経は、その末端で筋纖維と狭いすきまを隔てて連絡している。この部分をアという。このアで神経伝達物質として使われているアセチルコリンはナトリウムイオンなどを通過させるイオンチャネルを開かせて、筋細胞の興奮を引き起こす。脊椎動物の骨格筋を取り出し、それに接続する神経を1回刺激すると短い潜伏期の後、0.1秒ほどの収縮が起こる。このような単一の収縮を単収縮という。この刺激を1秒間に50回与えると、一続きの大きな収縮がみられるようになり、この収縮をイという。通常の骨格筋で起こる収縮はイである。

〔Ⅲ〕 筋収縮は大量の ATP を消費する。したがって、収縮を持続するためには ATP を補充しなければならない。その代表的な物質が骨格筋に多く蓄えられている高エネルギー酸化合物であるウである。ウは酵素の働きでエになり、これに伴って ADP が ATP になる。

骨格筋細胞は血中のグルコースを取り込みオとして大量に蓄えている。運動時には交感神経とアドレナリンの作用によりオの分解が進み、グルコースを生じる。グルコースは解糖系によりピルビン酸に分解され、その過程で 1 分子のグルコースあたり 2 分子の ATP を作る。

以上の反応は酸素を必要としないため、酸素供給の乏しい場合に利用される。ATP 供給は速やかであるが、短時間で枯渇し、エやカが細胞内に蓄積する。カは血中に拡散し、肝臓に運ばれて再びグルコースに合成される。

運動中は心拍の増加と骨格筋における血管の拡張により筋肉の血流量が増し、酸素の供給も増加する。このような条件ではピルビン酸は細胞小器官のミトコンドリアに入り、クエン酸回路や電子伝達系を経て ATP が合成される。

問 (1) 上記の文章の [ア] ~ [カ] に適切な語句を記入せよ。

問 (2) 下線部 (a) でトロポニンがカルシウムイオンと結合すると、どのような変化が起こり、アクチンフィラメントとミオシンフィラメントの相互作用が開始されるのか、4 行以内で説明せよ。

問 (3) カエル筋纖維のサルコメアの長さを変えて、張力を測ると図 1 のようになった。このことから予想されるサルコメアの長さ $2.2 \mu\text{m}$ の時の模式図を書け（ミオシンフィラメントとアクチンフィラメントの位置関係を明らかにすること）。

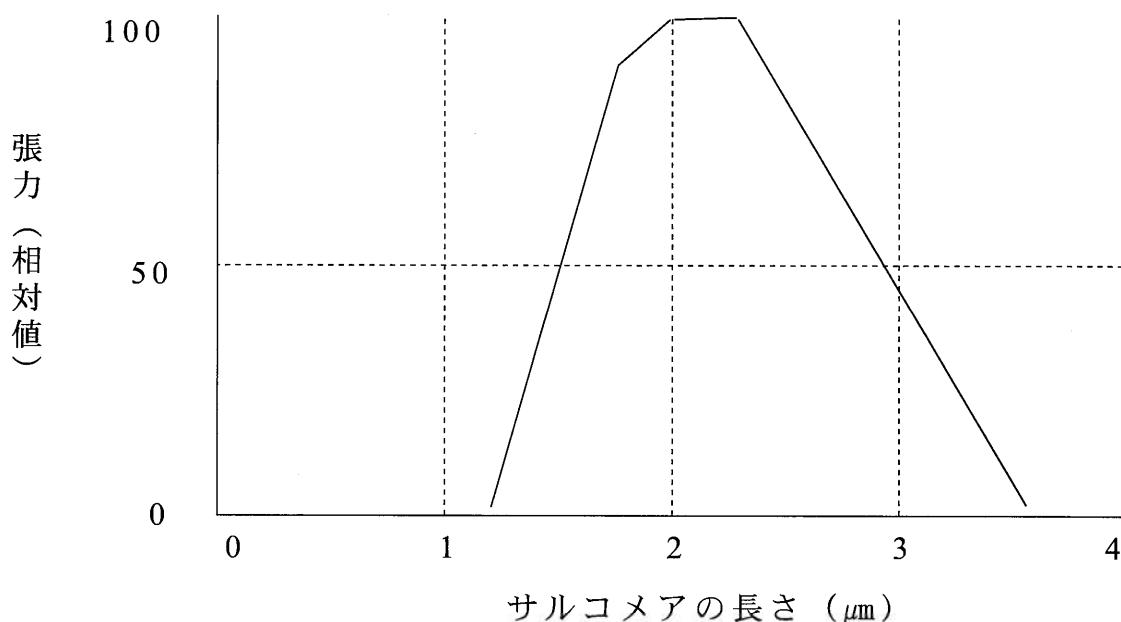


図 1

問 (4) カエルのふくらはぎの筋肉と神経が接する点から 20 mm 離れた A 点と 80 mm 離れた B 点を 1 回だけ刺激したところ、A 点では刺激から 6.3 ミリ秒 後に、B 点の刺激では刺激から 8.4 ミリ秒 後に筋肉の単収縮が記録された。この神経における興奮の伝導速度 ($\text{m}/\text{秒}$) を小数第 2 位を四捨五入して答えよ。

問 (5) 呼吸の電子伝達系において ATP がつくられるしくみを以下のキーワードをすべて使用して、5 行以内で説明せよ。

＜キーワード＞

ミトコンドリア、マトリックス、膜間、電子、ATP 合成酵素、水素イオン、タンパク質複合体、NADH、エネルギー

3 次の〔I〕～〔III〕の文章を読み、以下の問(1)～(6)に答えよ。

〔I〕 オオムギの種子などは主にデンプンを含む大きな ア をもつ。このような種子においては、胚で生産されたジベレリンが、ア を囲むように存在する糊粉層こふんそうに対して分泌され、アミラーゼなどの酵素の生産を誘導する。こうして生産されたアミラーゼはア に含まれるデンプンを分解し、発芽後の芽生えの成長エネルギー源として利用される。

オオムギの種子を半分に切ると、胚を含んだ側はアミラーゼの誘導が観察され、胚を含まない側はアミラーゼが誘導されない。したがって、胚がジベレリンの供給源であることがわかる。

(a) ジベレリンを有する巨大分子に結合させた化合物は、細胞膜を通過できないが、これを糊粉層の細胞のプロトプラスト（細胞壁を取り除いた細胞）に作用させると、アミラーゼの生産を促すことができる。しかし、ジベレリンを糊粉層のプロトプラスト内に注入しても、アミラーゼの誘導は観察されない。

〔II〕 頂芽優勢はオーキシンとサイトカイニンによって制御されている。頂芽優勢に関しては以下の①～⑤の実験結果が得られている。

- ① 頂芽を切除すると、切り口に近い側芽が成長を開始する。
- ② 頂芽の切り口にオーキシンを与えると、頂芽優勢が維持され、側芽の成長は抑制される。
- ③ 頂芽切除後、側芽に直接オーキシンを与えた場合は、頂芽優勢は維持されず、側芽は成長を開始する。
- ④ 頂芽を切除しなくても、オーキシンの(b) 極性移動を阻害する物質を茎に与えると、それより下位の側芽は成長を開始する。
- ⑤ 頂芽を切除しなくても、サイトカイニンを直接側芽に与えると、側芽は成長を開始する。

〔Ⅲ〕 多くの植物では花芽形成は日長による制御を受けている。

連続した暗期が **イ** より短いと花芽が形成される植物は長日植物と呼ばれ、 **イ** より長いと花芽が形成される植物は短日植物と呼ばれている。一方、日長時間に関係なく花芽が形成される植物を **ウ** と呼ぶ。

花芽の形成は日長時間を感知した葉で花成ホルモンがつくられ、これが茎頂分裂組織に移動することにより花芽が形成されると考えられている。

シロイヌナズナの変異体による研究で花成ホルモンに関係する遺伝子として *FT* 遺伝子が同定された。日長を感知した葉で *FT* タンパク質が合成され、 (c)この *FT* タンパク質が師管を通して 茎頂分裂組織に移動し、花芽が形成される。

問 (1) 上記の文章の **ア** ~ **ウ** に適切な語句を記入せよ。

問 (2) 種子が休眠することの 2 つの意義について、2 行以内で説明せよ。

問 (3) 下線部 (a) のような現象がなぜ起こるのか、1 行で説明せよ。ただし、ある巨大分子だけではアミラーゼの誘導に関与しないことがわかっている。

問 (4) 〔Ⅱ〕の実験結果から、頂芽優勢はどのようなしくみで起こると考えられているか、3 行以内で説明せよ。

問 (5) 下線部 (b) のオーキシンの極性移動のしくみについて、3 行以内で説明せよ。

問 (6) 下線部 (c) の *FT* タンパク質はどのような働きをするのか、2 行以内で説明せよ。

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験③問題

令和 5 年 11 月 4 日

志願学部／学科	試験時間	ページ数
医学部 保健学科 歯学部 農学部	15:20~16:50 (90 分)	13 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 13 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がない場合は、日本語で答えてください。
- 日本語での字数の指定がある場合は句読点、数字、アルファベット、記号も 1 字として数えてください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」は持ち帰ってください。

——このページは白紙——

C2346

2

334

——このページは白紙——

C2346

1 次の英文を読んで、以下の問い合わせに答えなさい。

Falling birth rates are a major concern for some of Asia's biggest economies. Governments in the region are spending hundreds of billions of dollars trying to reverse the trend. Will it work? Japan began introducing policies to encourage couples to have more children in the 1990s. South Korea started doing the same in the 2000s, while Singapore's first *fertility policy dates back to 1987. China, which has seen its population fall for the first time on 60 years, recently joined the growing club. While it is difficult to quantify exactly how much these policies have cost, South Korean President Yoon Suk-yeol recently said his country had spent more than \$200 billion (£160 billion) over the past 16 years on trying to boost the population. Yet last year South Korea broke its own record for the world's lowest fertility rate, with the average number of babies expected per woman falling to 0.78. (1) In neighbouring Japan, which had record low births of fewer than 800,000 last year, Prime Minister Fumio Kishida has *pledged to double the budget for child-related policies from 10 trillion yen, which is just over 2% of the country's gross domestic product. Globally, while there are more countries that are trying to lower birth rates, the number of countries wanting to increase fertility has more than tripled since 1976, according to the most recent report by the United Nations.

So why do these governments want to grow their populations? Simply put, having a bigger population who can work and produce more goods and services leads to higher economic growth. And while a larger population can mean higher costs for governments, it can also result in bigger tax *revenues. Also, many Asian countries are ageing rapidly. Japan leads the pack with nearly 30% of its population now over the age of 65 and some other nations in the region are not far behind. Compare that with India, which has just overtaken China as the world's most populous nation. More than a quarter of its people are between the age of 10 and 20, which gives its economy huge potential for growth. And when the share of the working age population gets smaller, the cost and burden of looking after the non-working population grow. "Negative population growth has an impact on the economy, and combined that with an ageing population, they won't be able to afford to support the elderly," said Xiujian Peng of Victoria University.

Most of the measures across the region to increase birth rates have been similar: payments for new parents, *subsidised or free education, extra nurseries, *tax incentives and expanded parental leave. But do these measures work? Data for the last few decades from Japan, South Korea and Singapore shows that attempts to boost their populations have had very little impact. Japan's finance ministry has published a study

which said the policies were a failure. It is a view echoed by the United Nations. “We know from history that the types of policies which we call demographic engineering where they try to incentivise women to have more babies, they just don't work,” Alanna Armitage of United Nations Population Fund told the BBC. “We need to understand the underlying determinants of why women are not having children, and that is often the inability of women to be able to combine their work life with their family life,” she added. But in Scandinavian countries, fertility policies have worked better than they did in Asia, according to Ms Peng. “The main reason is because they have a good welfare system and the cost of raising children is cheaper. Their gender equality is also much more balanced than in Asian countries.” Asian countries have ranked lower in comparison in the global gender gap report by the World Economic Forum.

There are also major questions over how these expensive measures should be funded, especially in Japan, which is the world's most *indebted developed economy. Options under consideration in Japan include selling more government bonds, which means increasing its debt, raising its sales tax or increasing *social insurance premiums. The first option adds financial burden to the future generations, while the other two would hit already struggling workers, which could convince them to have fewer children. But Antonio Fatás, professor of economics at *INSEAD says regardless of whether these policies work, they have to invest in them. “Fertility rates have not increased but what if there was less support? Maybe they would be even lower,” he said. (2) Governments are also investing in other areas to prepare their economies for shrinking populations. “China has been investing in technologies and innovations to make up for the declining labour force in order to mitigate the negative impact of the *shrinking population,” said Ms Peng. Also, while it remains unpopular in countries like Japan and South Korea, lawmakers are discussing changing their immigration rules to try to *entice younger workers from overseas. “Globally, the fertility rate is falling so it'll be a race to attract young people to come and work in your country,” Ms Peng added. Whether the money is well spent on fertility policies, these governments appear to have no other choice.

(出典：“Asia is spending big to battle low birth rates — will it work?” June 6, 2023, BBC より一部改変)
from BBC News at bbc.co.uk/news

*fertility : 出生率

*pledge : 約束する

*revenue : 歳入

*subsidise : 補助金を与える

*tax incentives : 税制優遇措置

*indebted : 負債がある

*social insurance premiums : 社会保険料

*INSEAD : 欧州経営大学院

*shrink : 減る

*entice : 呼び込む

問1 下線部(1)を日本語に訳しなさい。

問2 アジア諸国と比べ、スカンジナビア諸国で少子化対策が成功している理由は何か、本文に即して説明しなさい。

問3 下線部(2)の具体例としてあげられているものを、本文に即して説明しなさい。

問4 以下の(a)～(d)のうち、本文の内容から正しいと判断できるものを一つ選び記号で答えなさい。

- (a) 1976年以来、世界的に出生率の向上を望む国は3倍以上に増加している。
- (b) 世界で最も人口の多い国は中国である。
- (c) 税制優遇措置は、日本では人口増加に効果があった。
- (d) 国債の売却は、すでに苦しい状況にある労働者に打撃を与える。

——このページは白紙——

C2346

2 次の英文を読んで、以下の問い合わせに答えなさい。
([1]～[3]はそれぞれ段落番号を表す。)

[1] The traces of genetic material that humans constantly shed wherever they go could soon be used to track individual people, or even whole ethnic groups, scientists said on Monday, warning of a *looming “ethical *quagmire.”

[2] A recently developed technique can glean a huge amount of information from tiny samples of genetic material called (1)environmental DNA, or eDNA, that humans and animals leave behind everywhere — including in the air. The tool could lead to a range of medical and scientific advances, and could even help track down criminals, according to the authors of a new study published in the journal *Nature Ecology & Evolution*. But it also poses a vast range of concerns around consent, privacy and surveillance, they added. Humans spread their DNA — which carries genetic information specific to each person — everywhere, by shedding skin or hair cells, coughing out droplets, or in wastewater flushed down toilets. In recent years, scientists have been increasingly collecting the eDNA of wild animals, in the hopes of helping threatened species. For the new research, scientists at the University of Florida’s Whitney Laboratory for Marine Bioscience had been focused on collecting the eDNA of endangered sea turtles. But the international team of researchers inadvertently collected a massive amount of human eDNA, which they called “human genetic bycatch.” David Duffy, a wildlife disease genomic professor at the Whitney Laboratory who led the project, said they were “consistently surprised” by the amount and quality of the human eDNA they collected. “In most cases the quality is almost equivalent to if you took a sample from a person,” he said. (2)The scientists collected human eDNA from nearby oceans, rivers and towns, as well as from areas far from human settlements. Struggling to find a sample not *tainted by humans, they went to a section of a remote Florida island inaccessible to the public. It was free of human DNA — at least until a member of the team walked barefoot along the beach. They were then able to detect eDNA from a single footprint in the sand. In Duffy’s native Ireland, the team found human DNA all along a river, with the exception of the remote mountain stream at its source. Taking samples from the air of a veterinary hospital, the team captured eDNA that matched the staff, their animal patient and viruses common in animals.

[3] One of the study’s authors, Mark McCauley of the Whitney Laboratory, said that by sequencing the DNA samples, the team was able to identify if a person had a greater risk of diseases such as *autism and *diabetes. “All of this very personal, ancestral and health-related data is freely available in the environment, and it’s simply floating around us in the air right now,” McCauley told an online news conference. “We specifically did not examine our *sequences in a way that we would be able to pick out specific individuals

because of the ethical issues,” he said. But that would ⁽³⁾ “definitely” be possible in the future, he added. “The question is how long it takes until we’re at that stage.” The researchers emphasized the potential benefits of collecting human eDNA, such as tracking cancer *mutations in wastewater, discovering long-hidden archaeological sites or revealing the true *culprit of a crime using only the DNA they left in a room. Natalie Ram, a law professor at the University of Maryland not involved in the research, said the findings “should raise serious concern about genetic privacy and the appropriate limits of policing.” “Exploiting involuntarily shed genetic information for investigative aims risks putting all of us under *perpetual genetic surveillance,” she wrote in a commentary on the study. The authors of the study shared her concerns. McCauley warned harvesting human eDNA without consent could be used to track individual people or even target “vulnerable populations or ethnic minorities.” ⁽⁴⁾It is why the team decided to sound the alarm, they said in a statement, calling for policymakers and scientists to start working on regulation that could address such issues.

(Juliette Collen, “New threat to privacy? Scientists sound alarm about DNA tool”, The Japan Times, 2023/5/16, AFP-JIJI.一部改編)

*loom：迫る

*quagmire：泥沼

*taint：汚染する

*autism：自閉症

*diabetes：糖尿病

*sequence：配列

*mutation：突然変異

*culprit：犯罪者

*perpetual：永続的

問1 下線部 (1) の environmental DNA, or eDNA について, ① eDNA とは何か, また
② eDNA は何に役立つ可能性があるか, 段落[2]で述べられている内容に即して, それ
ぞれ30字程度で説明しなさい。

問2 下線部 (2) を日本語に訳しなさい。

問3 下線部 (3) について, 何が “definitely” be possible in the futureなのか, 本文に
即して説明しなさい。

問4 下線部 (4) の It が何を示しているか, 本文に即して説明しなさい。

——このページは白紙——

C2346

11

343

3 次の英文[I]と[II]を読んで、以下の問い合わせに答えなさい。

[I] The 19th century landscape paintings hanging in London's Tate Britain Museum looked awfully familiar to climate physicist Anna Lea Albright. Artist Joseph Mallord William Turner's signature way of *shrouding his *vistas in fog and smoke reminded Albright of her own research tracking air pollution.

"I started wondering if there was (1) a connection," says Albright, who had been visiting the museum on a day off from the Laboratory for Dynamical Meteorology in Paris. After all, Turner — a forerunner of the impressionist movement — was painting as Britain's industrial revolution gathered steam, and a growing number of *belching manufacturing plants earned London the nickname "The Big Smoke."

Turner's early works, such as his 1814 painting "Apulia in Search of Appullus," were rendered in sharp details. Later works, like his celebrated 1844 painting "Rain, Steam and Speed - the Great Western Railway," embraced a dreamier, *fuzzier aesthetic. Perhaps, Albright thought, this *burgeoning painting style wasn't a purely artistic phenomenon. Perhaps Turner and his successors painted exactly what they saw: their *environs becoming more and more obscured by *smokestack haze.

To find out how much realism there is in impressionism, Albright teamed up with Harvard University climatologist Peter Huybers, who's an expert in reconstructing pollution before instruments existed to closely track air quality. Their analysis of nearly 130 paintings by Turner, Paris-based impressionist Claude Monet and several others tells a tale of two modernizing cities.

Low contrast and whiter *hues are *hallmarks of the impressionist style. They are also hallmarks of air pollution, which can affect how a distant scene looks to the naked eye. (2) Tiny *airborne particles, or *aerosols, can absorb or scatter light. That makes the bright parts of objects appear dimmer while also shifting the entire scene's color toward neutral white.

The artworks that Albright and Huybers investigated, which span from the late 1700s to the early 1900s, decrease in contrast as the 19th century progresses. That trend tracks with an increase in air pollution, estimated from historical records of coal sales, Albright and Huybers report in (3) the Feb. 7 Proceedings of the National Academy of Sciences.

[II] Albright and Huybers distinguished art from aerosol by first using a mathematical model to analyze the contrast and color of 60 paintings that Turner made between 1796 and 1850 as well as 38 Monet works from 1864 to 1901. They then compared the findings to *sulfur dioxide emissions over the century, estimated from the trend in the annual amount of coal sold and burned in London and Paris. When sulfur dioxide reacts with molecules in the atmosphere, aerosols form.

"Our results indicate that [19th century] paintings capture changes in the *optical environment associated with increasingly polluted atmospheres during the industrial revolution," the researchers write. As sulfur dioxide emissions increased over time, the amount of contrast in both Turner's and Monet's paintings decreased. However, paintings of Paris that Monet made from 1864 to 1872 have much higher contrast than Turner's last paintings of London made two decades earlier.

The difference, Albright and Huybers say, can be attributed to the much slower start of the industrial revolution in France. Paris' air pollution level around 1870 was about what London's was when Turner started painting in the early 1800s. It confirms that the similar *progression in their painting styles can't be chalked up to coincidence, but is guided by air pollution, the pair conclude.

The researchers also analyzed the paintings' *visibility, or the distance at which an object can be clearly seen. Before 1830, the visibility in Turner's paintings averaged about 25 kilometers, the team found. Paintings made after 1830 had an average visibility of about 10 kilometers. Paintings made by Monet in London around 1900, such as "Charing Cross Bridge," have a visibility of less than five kilometers. That's similar to estimates for modern-day megacities such as Delhi and Beijing, Albright and Huybers say.

To strengthen their argument, the researchers also analyzed 18 paintings from four other London- and Paris-based impressionists. Again, as outdoor air pollution increased over time, the contrast and visibility in the paintings decreased, the team found. What's more, the decrease seen in French paintings lagged behind the decrease seen in British ones.

Overall, air pollution can explain about 61 percent of contrast differences between the paintings, the researchers calculate. In that respect, "different painters will paint in a similar way when the environment is similar," Albright says. "But I don't want to overstep and say: Oh, we can explain all of impressionism."

(Source: Bas den Hond, Science News, February 26, 2023. Used with permission.)

(注)

*shroud : 覆う	*vista : 風景	*belch : 吹き出す
*fuzzier : fuzzy (ぼやけた) の比較級		*burgeon : 芽生える
*environ : (…を) 取り巻く	*smokestack haze : 煙突の薄煙	
*hue : 色合い	*hallmark : 特徴的なこと	
*airborne : 空中の	*aerosol : エアロゾル	
*sulfur dioxide : 二酸化硫黄	*optical : 視覚の	
*progression : 発展, 進み	*visibility : 視程	

問1. 下線部(1)の a connection は何を指すか, [I] の内容に即して説明しなさい。

問2. 下線部(2)を日本語に訳しなさい。

問3. 下線部(3)の英文雑誌で報告されている研究成果に至る過程で Albright and Huybers はどのようなことを行ったか, [II] の内容に即して, 簡潔に 4 点説明しなさい。

東北大学医学部保健学科
令和6年度（2024年度）
AO入試（総合型選抜）Ⅲ期 筆記試験
（試験時間 11:00～12:00 (60分)）

注意事項

1. 試験開始の合図があるまで、この問題冊子、解答用紙を開いてはいけない。
2. 試験開始の合図の直後に、配布された問題冊子（6ページ）、解答用紙（2枚）がすべてあることを確認すること。なお、問題冊子のページの脱落、印刷不鮮明の箇所及び解答用紙の汚れなどがあった場合には、手を挙げて監督者に申し出ること。
3. 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけない。
4. 最初に、解答用紙（2枚）に受験記号番号を忘れずに記入すること。
5. 解答は、必ず解答用紙の指定された箇所に記入すること。
6. 解答に字数の指定がある場合、句読点、数字、アルファベット、記号も1字として数えること。
7. 試験終了後、解答用紙を回収するので、持ち帰ってはいけない。問題冊子は持ち帰ること。

— このページは白紙 —

4

2

0

✓

— このページは白紙 —

次の英文を読み、特に指示がない限りは設問に日本語で答えなさい。

※文中の NIH は、National Institutes of Health；アメリカ国立衛生研究所の略称である。アメリカ合衆国で最も古い医学研究の拠点機関であり、世界をリードする権威ある研究機関である。

① A positive research climate allows and encourages open debate about how data should be interpreted. Often there is more than one way to view the results of any given experiment and science is *propelled forward by the discussion. To maintain a positive climate at NIH, differences of opinion should be expressed with *civility and respect. Expressing disagreement or a differing interpretation of data is not equivalent to making an *allegation of research *misconduct.

propel : 前進させる

civility : 礼節

allegation : 申し立て

misconduct : 不正

integrity : 完全性

veracity : 信憑性

formulation : 立案

deceptive : 欺く

enhancement : 強調

Research misconduct becomes an issue when the *integrity or *veracity of the actual data can be questioned. The scientific community and general public rightly expect intellectual honesty in the *formulation, conduct, reporting, and reviewing of scientific research. Investigators must act with integrity when editing, analyzing, and presenting data. *Deceptive manipulation of data, be it misreporting of data, inappropriate exclusion of data outliers, or inappropriate *enhancement of images, are examples of research misconduct. The manipulated data need not be published or presented at a conference to constitute research misconduct.

Research misconduct is defined as fabrication, falsification, or plagiarism in proposing, performing, or reviewing research, or in reporting research results. Fabrication is making up data or results and recording or reporting them. Falsification is manipulating research data, materials, equipment, or processes, or changing or omitting data or results such that the research is not accurately represented in the research record. Plagiarism is the *appropriation of another person's ideas, processes, results, or words without giving appropriate credit. Research misconduct does not include honest error or differences of opinion. The research record is the record of data or results, both physical and electronic, that *embody the facts resulting from scientific inquiry; including but not limited to emails, research *proposals, laboratory records, progress reports, abstracts, *theses, presentations, internal reports, and journal articles.

appropriation : 流用

embody : 具体化する

proposal : 計画書

theses : 論文

The NIH takes all allegations of research misconduct seriously. All NIH personnel are expected to report observed, apparent, or suspected research misconduct to the NIH Agency Intramural Research Integrity

Officer (AIRIO). ②The procedures followed at the NIH are designed to permit allegations of research misconduct to be processed *promptly, *confidentially, and fairly. This helps minimize any harm to the public that could result if misconduct is found, and it prevents damage to the career of those who are incorrectly *implicated. The entire process may take several months to complete.

promptly : 即座に
confidentially : 秘密に
implicate : 関与する

Although misconduct proceedings are confidential, a finding of misconduct may result in NIH taking *administrative actions to remediate the harm, consistent with applicable personnel rules and regulations, which may entail notifying certain parties with a “need to know” the sensitive information. A finding of research misconduct may result in the disclosure of the misconduct by NIH to research collaborators, professional journals, professional societies, news media, and the public. ③Administrative actions taken may include requiring a correction or retraction of pending or published papers, removal of personnel from a project, suspension, salary reduction, reduction in rank, or *termination of employment.

administrative : 管理的な

termination : 終了

The AIRIO will also take action to prevent *retaliation against any *complainant who brings forward an allegation in good faith.

retaliation : 報復
complainant : 申立人

Although not research misconduct, poor scientific practices can impact the integrity and productivity of a research program. These practices are called Questionable Research Practices or *Detimental Research Practices (DRPs).

Examples of troubling DRPs include:

- Honorary or ghost authorship
- Poor stewardship of the research record
- *Neglectful or exploitative supervision in research
- Misleading statistical analyses that fall short of falsification

detimental: 有害な

neglectful : 慢怠な

A critical part of training and mentoring is promoting explicit discussion of best practices in the laboratory. To that end, discussion of research ethics, including the required annual case studies found in the Responsible Conduct of Research Training Program, should be held regularly by NIH Institutes and Centers. All personnel should understand the responsibilities and expectations relevant to recording and maintaining data in their laboratories, including the requirement to maintain research

records for a minimum of seven years after completion of the project. Principal Investigators (PIs) and supervisors should make a point to review experimental data frequently. Presentation of figures in group meetings should be accompanied by primary data for *verification whenever possible. Perhaps most importantly, PIs must model ethical research practices and ensure that *undue pressure to succeed does not create a climate that tolerates DRPs.

verification : 検証

undue : 過度の

(出典 : National Institutes of Health Office of the Director: Guidelines and Policies for the Conduct of Research in the Intramural Research Program at NIH, Seventh Edition, 2021 一部改変)

1. 下線部①に関して、(ア) どのような環境のことを指しているのか、また(イ)それを維持するためにはどのようなことが大切なのか、それぞれ具体的に説明しなさい。
2. 本文で定義されている研究不正になる行為をあらわす単語3つを、本文から英単語で書き出しなさい。また、それぞれどのような行為なのか、本文にしたがって説明しなさい。
3. 下線部②は何を抑え、防止しているのか説明しなさい。
4. NIHで研究不正行為が明らかになった場合、下線部③にはどのようなものが含まれる可能性があるか、本文に即して説明しなさい。
5. 筆者は研究不正を起こさせないために気をつけることを「すべての職員」「研究責任者と監督者」「最も重要なこと」に分けて述べている。それぞれ具体的に説明しなさい。
6. 以下のア～キのうち、本文で述べられていないものを2つ選び記号で答えなさい。
ア 研究不正への NIH の対応と処分 イ 研究不正と不正所得 ウ 研究不正の内容
エ 不適切な科学実践の内容 オ 不適切な論文作法 カ 疑わしい科学実践
キ 不正を起こさせないための指導と研修
7. 日本の研究機関において、研究不正への対策としてどのようなものがあるとよいか、NIHの取り組みを参考にしながら、あなたの考えを150字から200字で述べなさい。

令和 6 年度 AO 入試問題集 (歯学部)

公表期限：2027 年 3 月末

東北大学アドミッション機構

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験①問題

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
歯学部	9:30~10:50 (80 分)	6 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 6 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

-----このページは白紙-----

A246

——このページは白紙——

A246

1

以下の問い合わせに答えよ。

(1) 1, 2, 3, 4, 5, 6 の目が等しい確率で出る 1 個のさいころを 3 回続けて投げる。出た目が連続する 3 つの数となる確率を求めよ。ただし、出る目の順番は問わない。

(2) $x > 1$ とする。次の不等式を満たす x の値の範囲を求めよ。

$$\log_3 x + \log_x 9 \leq \frac{9}{2}$$

(3) 次の定積分の値を求めよ。

$$\int_{-1}^1 |x(x+1)^2| dx$$

2 三角形 ABC において, $AB = 7$, $BC = 5$, $CA = 3$ とする。辺 BC を 4:1 に内分する点を D とする。頂点 B から直線 AC に垂線を引き, 直線 AC との交点を E とする。 $\overrightarrow{AB} = \vec{b}$, $\overrightarrow{AC} = \vec{c}$ とするとき, 次の問い合わせに答えよ。

- (1) 内積 $\vec{b} \cdot \vec{c}$ の値を求めよ。
- (2) 線分 AE の長さを求め, \overrightarrow{AE} を \vec{c} を用いて表せ。
- (3) 三角形 ABC の面積を求めよ。
- (4) 点 E に関して点 C と対称な点を F とする。直線 AD と直線 BF との交点を G とするとき, 三角形 BDG の面積を求めよ。

3

xy 平面上の曲線 $C_0 : x^2 - 2xy + y^2 - 3\sqrt{2}x + \sqrt{2}y = 0$ を原点の周りに $\frac{\pi}{4}$ だけ回転した曲線を C_1 とする。次の問い合わせに答えよ。

- (1) 点 $A(x, y)$ を原点の周りに $\frac{\pi}{4}$ だけ回転した点を $B(s, t)$ とする。 s, t をそれぞれ x, y を用いて表せ。
- (2) C_1 を表す x と y との関係式を求めよ。
- (3) C_0 の概形を xy 平面上に描け。
- (4) C_0 と x 軸とで囲まれた部分の面積を求めよ。

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験② 封筒

令和 5 年 11 月 4 日

志願学部	試験時間	問題冊子数
歯学部	13:00~14:20 (80 分)	3 冊

注意事項

- 試験開始の合図があるまで、この封筒を開いてはいけません。
- この封筒には、「問題冊子」3冊、「解答用紙」3種類、「メモ用紙」1冊が入っています。
- 筆記試験②は、＜必答問題1＞、＜選択問題1＞、＜選択問題2＞の3冊からなります。
※ 必答問題1の他に、＜選択問題1～2＞のうちから1つを選択し、解答してください。選択問題を選択しなかった場合は、失格となります。
※ ＜選択問題＞の解答用紙1枚目の所定の欄に、選択の有無を で囲んでください。

選択する場合：

選択する
選択しない

選択しない場合：

選択する
選択しない

- ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。問題冊子のホチキスは外さないでください。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」は1枚につき1か所の所定の欄に、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。選択しない問題の解答用紙にも受験記号番号を記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は、「解答用紙」は全て回収しますので持ち帰ってはいけません。
本封筒、「問題冊子」及び「メモ用紙」は持ち帰ってください。

令和 6 年度（2024 年度）東北大学
AO 入試（総合型選抜）Ⅱ期

筆記試験②

＜必答問題 1 ＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
歯 学 部	13:00～14:20 (80 分)	14 ページ

——このページは白紙——

——このページは白紙——

必要があれば次の数値を用いなさい。

気体定数: $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$

絶対零度: $-273 \text{ }^\circ\text{C}$

アボガドロ定数: $6.0 \times 10^{23} / \text{mol}$

ファラデー定数: $9.65 \times 10^4 \text{ C/mol}$

原子量: H = 1.0 Li = 6.9 C = 12.0 O = 16.0 Cl = 35.5 K = 39.1

1 気体の溶解に関する文〔I〕と蒸気圧に関する文〔II〕を読んで、問1から問5に答えなさい。

〔I〕体積を自由に変えることのできるピストン付きの容器に、水 1.0 L と気体A 0.30 mol のみを入れて、気体Aと水を合わせた容器内の体積が 3.0 L になるように固定具でピストンを固定した（図1）。実験のあいだ、容器の温度は常に 20 °C に保たれていた。気体Aの水への溶解はヘンリーの法則に従い、

20 °C で水に接している $1.0 \times 10^5 \text{ Pa}$ の気体Aは、水 1.0 L に $3.9 \times 10^{-2} \text{ mol}$ 溶けることとする。気体Aは今回の実験における温度、圧力のもとで凝縮することではなく、理想気体としてふるまい、また、ピストンの質量、水の蒸気圧は無視する。

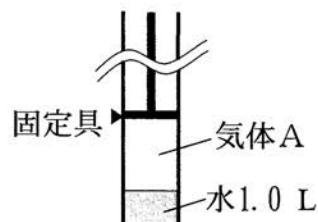


図 1

問1 容器内の気体Aの圧力を P [Pa] として(1)から(3)に答えなさい。

(1) 水 1.0 L に溶解している気体Aの物質量 n_s [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。

$$n_s = [] \times P$$

(2) 水の上の空間に存在する気体Aの物質量 n_g [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。ただし、容器内の気体部分の体積は 2.0 L とし、気体定数 $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$ と絶対温度 293 K の積を $2.43 \times 10^6 \text{ Pa} \cdot \text{L}/\text{mol}$ として計算しなさい。

$$n_g = [] \times P$$

(3) P [Pa] の値を求め、その値を有効数字 2 桁で書きなさい。

問 2 溫度を 20°C に保ったまま、ピストンの固定をはずして自由に動く状態にしたところ、容器内の気体 A の圧力が容器にかかる大気圧 ($1.0 \times 10^5 \text{ Pa}$) と等しくなってピストンが止まった。この状態を状態 1 とする(図 2 左)。状態 1 で水に溶けている気体 A の物質量を n_1 [mol] とする。次に温度を 20°C に保ったまま、状態 1 のピストンにおもりを載せ、容器内の気体 A の圧力を $2.0 \times 10^5 \text{ Pa}$ とした状態を状態 2 とする(図 2 右)。状態 2 で水に溶けている気体 A の物質量を n_2 [mol] とする。(1) および(2) に答えなさい。ただし、固定をはずしたピストンは摩擦なく動くものとする。

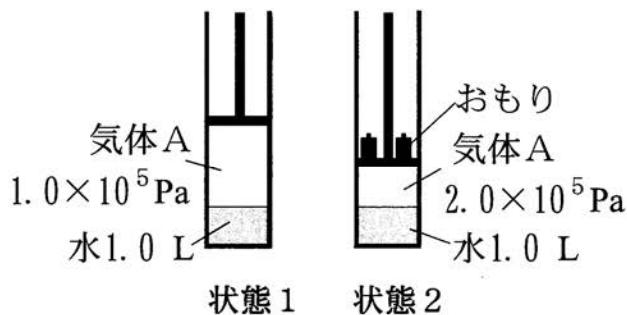


図 2

(1) n_1 [mol] の気体 A の体積を $1.0 \times 10^5 \text{ Pa}$ のもとで、 n_2 [mol] の気体 A の体積を $2.0 \times 10^5 \text{ Pa}$ のもとで測定したところ、それぞれ V_1 [L], V_2 [L] であった。 V_1 と V_2 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積測定時の温度はいずれも 20°C とする。

① $2V_1 = V_2$ ② $V_1 = V_2$ ③ $V_1 = 2V_2$

(2) n_1 [mol] の気体 A と n_2 [mol] の気体 A の体積を同じ圧力のもとで測定したところ、それぞれ V_3 [L], V_4 [L] であった。 V_3 と V_4 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積測定時の温度はいずれも 20°C とする。

① $2V_3 = V_4$ ② $V_3 = V_4$ ③ $V_3 = 2V_4$

〔II〕 体積を自由に変えることのできるピストン付きの容器に、水 0.10 mol と水素 0.10 mol のみを入れて体積が 3.0 L になるようピストンを固定し、温度を 90 °C に保つて放置した。_(a) 十分に放置した段階で、容器

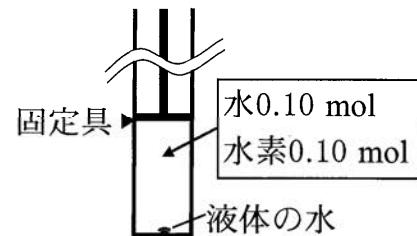


図 3

内には水の一部が液体として存在しており、このときの水素分圧は $1.0 \times 10^5 \text{ Pa}$ であった(図 3)。また、図 3 の容器にかかる大気圧は $1.0 \times 10^5 \text{ Pa}$ であり、90 °C での水の蒸気圧(飽和蒸気圧)は $7.0 \times 10^4 \text{ Pa}$ であった。

次に、温度を 90 °C に保ったまま、ピストンの固定をはずして可動状態とし、ピストンを引いて体積をゆっくりと増加させ、_(b) 液体の水がすべて蒸発した瞬間にピストンを再び固定した。さらに、温度を 90 °C に保ったまま、ピストンの固定を再びはずして自由に動く状態とし、静止するまで放置することにより、_(c) 容器内部を大気圧と等しい圧力とした。

また、図 3 の装置とは別に、発火装置が付いた体積が 3.0 L の密閉容器(体積一定)を準備し、この容器に_(d) 水素 0.10 mol と酸素 0.10 mol のみを入れ、水素を完全燃焼させたのち、容器内部の温度を 90 °C に保った。

ピストンの質量および発火装置の体積は無視してよく、固定を外すとピストンは摩擦なく動くこととする。また、水素と酸素の水への溶解および液体の水の体積は無視し、気体は理想気体であるとする。

問 3 下線部 (a) の段階について、次の(1)および(2)に答えなさい。

- (1) 容器内の全圧は何 Pa か。その値を有効数字 2 枠で書きなさい。
- (2) 気体として存在する水は何 mol か。その値を有効数字 2 枠で書きなさい。

問 4 下線部 (b) の段階および下線部 (c) の段階について、次の(1)および(2)に答えなさい。

- (1) 下線部 (b) の段階の容器内の全圧は何 Pa か。その値を有効数字 2 枠で書きなさい。
- (2) 下線部 (c) の段階の容器の体積は何 L か。その値を有効数字 2 枠で書きなさい。

問 5 下線部 (d) において、容器内部の圧力は何 Pa になるか。その値を有効数字 2 枠で書きなさい。

2 次の文章〔I〕, 〔II〕および〔III〕を読み, 問1から問8に答えなさい。

〔I〕 ある反応が進行するかどうかは, その反応の活性化工エネルギーが正反応も逆反応も十分に速く起こるほど低い場合には, 次の2つの要因によって決まる。なお, 以下の文章では融解や溶解などの状態の変化も広義の反応に含めて述べる。

1つの要因は, 反応物から生成物に変化する際の内部エネルギーの変化である。内部エネルギーとは, いま観察者が注目している部分(これを系という)がもつ全エネルギー, すなわち運動エネルギーや結合エネルギーの総和のことである。一般に内部エネルギーが小さいほどその系は安定である。この変化の過程で系の内部エネルギーが減少する場合には, 系はその分のエネルギーを熱として系の外部に放出するので発熱反応となり, また生成物は反応物よりも安定になるので, 反応は自発的に進行しやすい。逆に, 系の内部エネルギーが増加する場合には, その分のエネルギーを系の外部から取り込むので吸熱反応となり, 生成物は反応物よりも不安定になるので反応は進行しにくい。

もう1つの要因は, 反応物から生成物に変化する際の系の乱雑さの変化である。反応によって系の乱雑さが増加する場合には, その反応は自発的に進行しやすいことが知られている。逆に, 反応によって系の乱雑さが減少する場合には, その反応は進行しにくい。ここで, 系の乱雫さが増加する変化とは, (a)固体から液体へ(融解), 液体から気体へ(気化)などの状態変化, (b)分離されていた2つの物質が均一に混じり合う変化(気体の混合, 固体の溶媒への溶解など), (c)化学反応において反応物より生成物の方が分子の数が増える変化などである。

ある反応において, 上記2つの要因の効果が互いに強め合う場合には, 反応は不可逆となり, 自発的に進行するか, または全く進行しないかのどちらかとなる。一方, 2つの要因の効果が互いに弱め合う場合には, 反応は可逆となり, 自発的に進行するかどうかは, その反応条件で2つの要因のどちらが大きいかによって決まる。たとえば, 反応の進行に対して, 反応による内部エネルギーの増加が与える効果が, 乱雫さの増加が与える効果より大きければ, その反応は自発的には進行しないが, 小さければ自発的に進行する。

問1 次の反応(ア)から(オ)は、それぞれ下の表の反応の分類AからDのどれにあてはまるか。解答欄にAからDの記号を記入しなさい。なお、これらの反応の最初と最後で系の温度は同じであるとする。

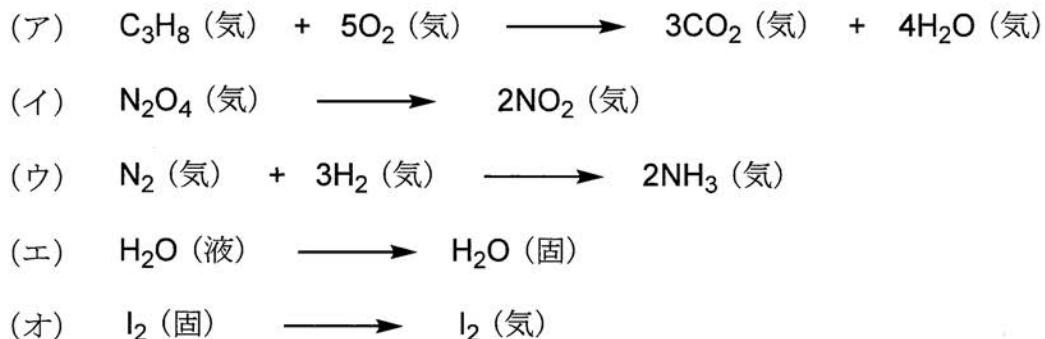
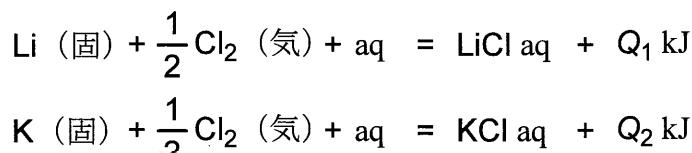



表 热の出入りと乱雑さの変化による反応の分類

反応の分類	热の出入り	乱雑さの変化
A	発熱	増加
B	吸熱	減少
C	発熱	減少
D	吸熱	増加

問2 LiCl (固) および KCl (固) の 25°C での水への溶解熱はそれぞれ 37.1 kJ/mol および -17.2 kJ/mol である。次の(1)および(2)に答えなさい。

(1) LiCl (固) および KCl (固) の 25°C での生成熱はそれぞれ 408.8 kJ/mol および 435.9 kJ/mol である。次の熱化学方程式の Q_1 と Q_2 を比べ、大きい方の値を求めて小数第1位まで答えなさい。なお、aqは溶媒としての多量の水を、化学式の後に付けた aq は水溶液を表す。

(2) KCl (固) の水への溶解は吸熱反応であるが、自発的に進行する。その理由を「内部エネルギー」および「乱雑さ」という語句を用いて40~50字程度で説明しなさい。

〔II〕 塩化リチウムおよび塩化カリウムの結晶はいずれも塩化ナトリウム型構造（図1）をとっている。塩化リチウムおよび塩化カリウムの融点はそれぞれ $613\text{ }^{\circ}\text{C}$ および $776\text{ }^{\circ}\text{C}$ であるが、塩化リチウムと塩化カリウムを塩化リチウム : 塩化カリウム = 6:4 の物質量比で含む均一な混合物は、 $450\text{ }^{\circ}\text{C}$ では融解し液体となっている。この融解している塩、すなわち溶融塩を溶融塩 E とする。

溶融塩 E 100.0 g を $450\text{ }^{\circ}\text{C}$ に保ち、適切な材質の電極 X および電極 Y を挿入して電極 X と電極 Y との間に 3.6 V の電圧をかけたところ、電極 X 上にはリチウム単体（融点 $181\text{ }^{\circ}\text{C}$ ） が液体として生成し、電極 Y 上には塩素が気体として発生した。液体のリチウムの密度は溶融塩 E の密度よりも小さいため、生成したリチウムは溶融塩 E に浮かんでくるので、これを塩素と接触させないようにして集めることによりリチウム単体が得られた。なお、この電気分解の間に塩化カリウムは変化せず、また溶融塩 E は液体の状態を保っていたとする。

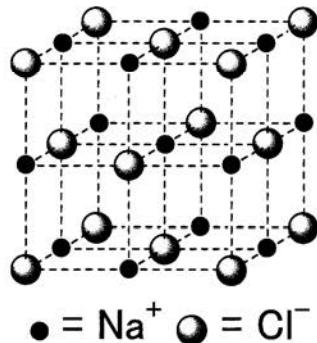


図1 塩化ナトリウム型構造

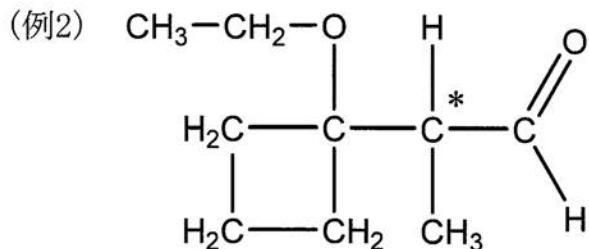
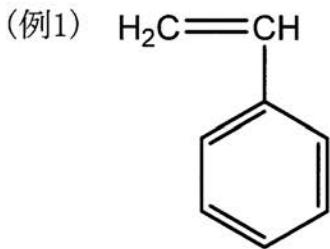
問3 塩化カリウム結晶の単位格子 1 個当たりの質量は何 g か。その数値を有効数字 2 桁で答えなさい。

問4 下線部において、電極 X および電極 Y のうち一方は陽極、もう一方は陰極である。(ア) 陽極上および(イ) 陰極上で起こる反応を、それぞれ電子 (e^-) を含むイオン反応式で書きなさい。

問5 電極 X と電極 Y との間に 5.0 A の一定電流が 2.0 時間流れたとすると、得られるリチウム単体の物質量は何 mol か。その数値を有効数字 2 桁で答えなさい。

[III] (a) 酸化物には、水と反応させて水溶液としたときに、その水溶液が酸性を示すものから塩基性を示すものまで様々なものがある。また、水に溶けない酸化物でも、酸や塩基の水溶液と反応して溶けるものがある。たとえば、(b) 酸化アルミニウムは両性酸化物と呼ばれ、強酸とも強塩基とも反応して溶ける。また、二酸化ケイ素は常温ではほとんどの酸や塩基に対して安定であるが、(c) フッ化水素酸（フッ化水素の水溶液）とは反応して溶ける。

問6 下線部(a)に関連して、下の(ア)から(オ)に示す酸化物 0.1 mol を水 1 L に溶かし、得られた水溶液の pH を比べたとき、pH が最も低いもの、2番目に低いものおよび3番目に低いものを下の(ア)から(オ)の中からそれぞれ選び、それらの記号を pH が低い順に、左から右に列記しなさい。



(ア) BaO (イ) SO₃ (ウ) Na₂O (エ) P₄O₁₀ (オ) CO₂

問7 下線部(b)に関して、次の反応(1)および(2)のイオン式を含まない化学反応式をそれぞれ書きなさい。

- (1) 酸化アルミニウムと塩酸との反応
- (2) 酸化アルミニウムと水酸化ナトリウム水溶液との反応

問8 下線部(c)で起こる反応のイオン式を含まない化学反応式を書きなさい。

3 次の問1から問4に答えなさい。構造式や不斉炭素原子の表示(*)を求められた場合には、(例1) および(例2) にならって書きなさい。

問1 示性式 $\text{C}_4\text{H}_9\text{OH}$ で表されるアルコールの構造式を図1に示す。これらの中で、下の条件(1)から(4)の各々に当てはまるアルコールをAからDの中から選び、その記号を解答欄に書きなさい。なお、それぞれの条件において、解答は1つとは限らない。

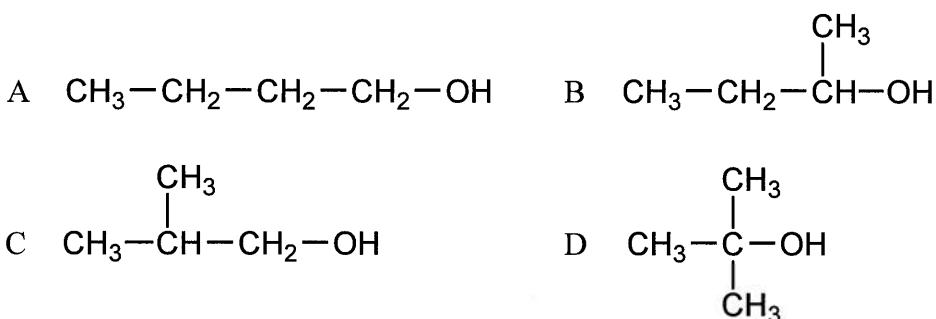


図1

- (1) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、ケトンを生成するアルコール
- (2) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、カルボン酸を生成するアルコール
- (3) 酸を加えて加熱し、分子内脱水反応を起こさせて生じるアルケンが、エチル基を含まないアルケンのみであるアルコール
- (4) ヨウ素と水酸化ナトリウム水溶液を加えて反応させると、 CHI_3 が主要生成物の1つとして生じるアルコール

問2 ベンゼンの反応に関する次の文章を読み、下の(1)から(3)に答えなさい。

ベンゼンに濃硫酸と濃硝酸を加えて 60 °Cで反応させると、水より密度が高く水に溶けない無色から淡黄色の液体である **A** が生成する。また、(a) ベンゼンと濃硫酸との反応では、水溶性のベンゼンスルホン酸が生成する。触媒として塩化鉄(Ⅲ)を用いて、ベンゼンを塩素と反応させると、クロロベンゼンが生成する。これら3つの反応は **ア** 反応に分類される。

一方、紫外線を照射しながらベンゼンと塩素とを反応させると、**B** が生成する。また、ベンゼンを白金やニッケルなどを触媒として圧力をかけた水素と反応させると、環状化合物 C_6H_{12} が生成する。これら2つの反応は **イ** 反応に分類される。

(1) 空欄 **A** および **B** に入る化合物を構造式で書きなさい。

(2) 空欄 **ア** および **イ** に入る最も適切な語句を、下の枠の中から選んで書きなさい。

脱離	付加	分解	重合	置換
----	----	----	----	----

(3) 下線部 (a) の反応の化学反応式を書きなさい。その際、芳香族化合物は構造式で書きなさい。

問3 クロロベンゼン、フェノール、安息香酸およびアニリンを含むジエチルエーテル溶液Cが分液ロートに入っている。この溶液Cから、それぞれ次の化合物(1)と(2)のみを分離したい。いずれの場合も、下の(ク)を最後の操作として行うこととし、それ以前に行うすべての操作を、下の〔操作〕の中の(ウ)から(キ)の中から選んで、その操作の順番に左から右に記号を列記しなさい。なお、(ク)より前に行う操作は、(1)では2つ、(2)では3つである。

(1) アニリン

(2) フェノール

〔操作〕

(ウ) 溶液Cに希塩酸を加えて振り混ぜ、分離した下層を流し出す。

(エ) 溶液Cに炭酸水素ナトリウム水溶液を加えて振り混ぜ、分離した下層を流し出す。

(オ) 下層を流し出して残った上層に、水酸化ナトリウム水溶液を加えて振り混ぜ、分離した下層を流し出す。

(カ) 流し出した下層を別の分液ロートに入れる。それに希塩酸を加えて酸性にした後、ジエチルエーテルを加えて振り混ぜ、分離した下層を流し出す。

(キ) 流し出した下層を別の分液ロートに入れる。それに水酸化ナトリウム水溶液を加えて塩基性にした後、ジエチルエーテルを加えて振り混ぜ、分離した下層を流し出す。

〔最後の操作〕

(ク) 下層を流し出して残った上層をフラスコに移し、溶媒を蒸発させて除く。

問4 次の指定された条件 (1) から (4) を満たす有機化合物のうち、不斉炭素原子を 1 個もつものの構造式をそれぞれ 1 つずつ書きなさい。不斉炭素原子には*印を付けなさい。

- (1) 分子式 C_7H_{16} をもち 3 個の炭素と結合している炭素を 2 個含むアルカン
- (2) 分子式 $C_5H_{12}O$ をもつエーテル
- (3) 分子式 C_5H_8O をもち四員環構造（4 個の原子からなる環状構造）をもつケトン
- (4) 分子式 $C_3H_6O_3$ をもつヒドロキシ酸

令和 6 年度（2024 年度）東北大学

AO入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 1 ＞

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
歯学部	13:00~14:20 (80 分)	13 ページ

B2456

——このページは白紙——

——このページは白紙——

1

図1のように、表面のあらい円盤があり、円盤は軸を中心に回転装置で回転することができるようになっている。長さ ℓ の軽くて伸び縮みしない棒の一端に質量 m の小物体を取り付け、他端を円盤の軸になめらかに自由に動くことができるよう取り付けた。小物体と円盤との間の静止摩擦係数は μ 、動摩擦係数は μ' であり、棒と円盤との間に摩擦力ははたらかない。円盤は傾きを変えることができ、鉛直線と円盤の軸との間の角度（傾き角）を ϕ とする。円盤表面と円盤の軸の交点を原点 O として、水平方向に x 軸、傾いた斜面にそって下方に y 軸をとる。座標軸は円盤の回転とともに回転しないものとし、 y 軸と棒がなす角度を θ として円盤の軸を上から見て反時計回りを正の角度とする。重力の大きさを g とし、空気抵抗は無視できるものとする。角度はラジアンを用いて表す。

次の問1～問6に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

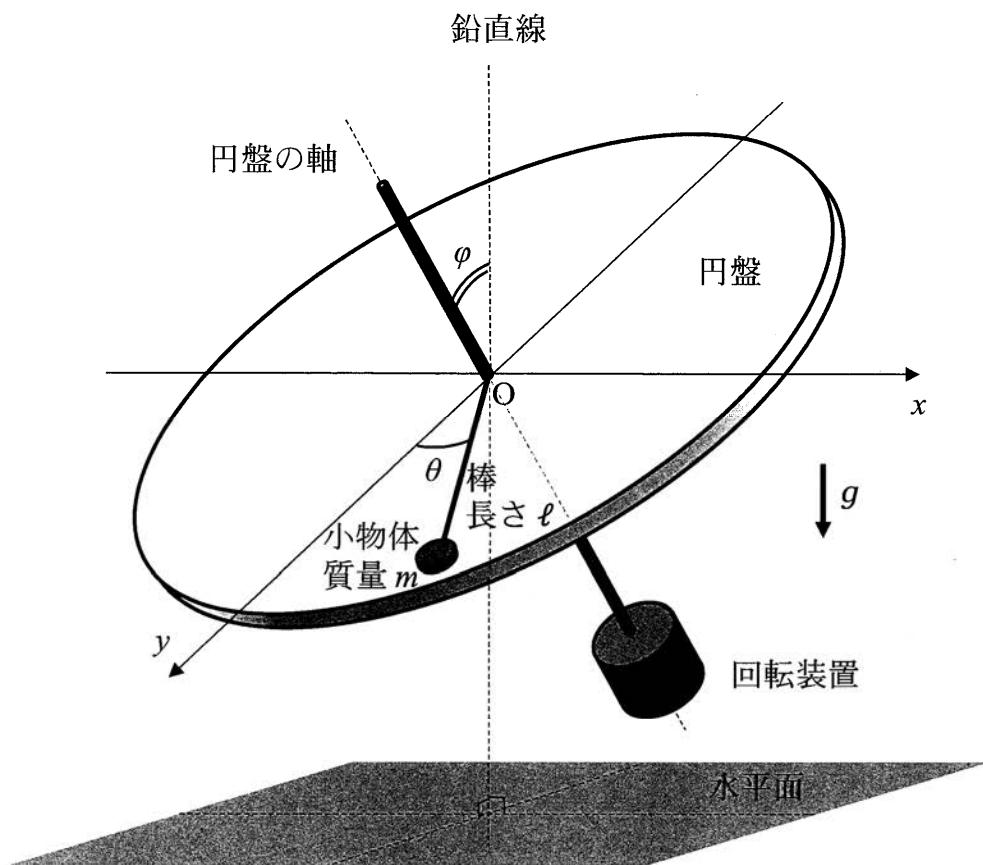


図1

※採点では、重力加速度の大きさを g として計算している解答も、論理的に間違いが無ければ正解として扱った。

はじめに、円盤の傾き角を $\varphi = \frac{\pi}{2}$ とした。円盤は回転していない。

問1 図2のように、小物体を $\theta = \frac{2}{3}\pi$ の角度の位置から静かにはなすと、小物体は円盤の表面から離れることなく運動した。 $\theta = \frac{1}{3}\pi$ の角度の位置を通過するときに小物体が棒から受ける力の大きさ S を、 m ， g ， ℓ から必要なものを用いて表せ。また、その力の向きを答えよ。

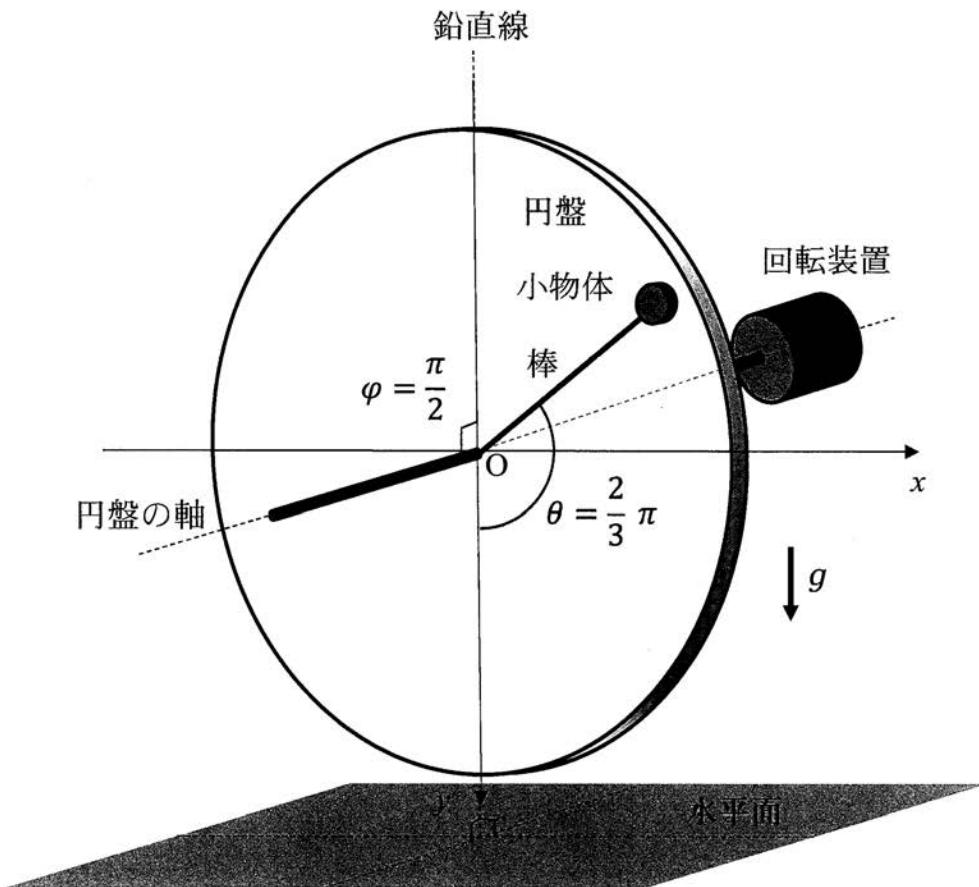


図2

問2 $|\theta|$ が十分小さい角度の位置から小物体を静かにはなしたとき、小物体は円盤の表面にそって $x = 0$ ， $y = \ell$ の点を中心に、 ℓ に比べて十分小さな振れ幅で振動した。このとき、小物体にはたらく力が復元力になることを示し、振動の角振動数 ω と周期 T を、 m ， g ， ℓ から必要なものを用いて表せ。

なお、必要であれば角度 α について、 $|\alpha|$ が十分小さいときに成り立つ近似式 $\sin \alpha \approx \tan \alpha \approx \alpha$ ， $\cos \alpha \approx 1$ を用いよ。

次に、円盤を水平にして傾き角を $\varphi = 0$ とした。円盤は回転していない。

問3 小物体を、棒から力を受けないようにして x 軸上の $x = \ell$ の位置に静かに置いた。その後、円盤の傾き角 φ をゆっくり大きくしていくと、傾き角が φ_0 になったときに小物体はすべりだした。静止摩擦係数 μ を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

問4 小物体がすべりだした直後、円盤の傾き角を φ_0 に保った。その後、小物体が θ $\left(0 \leq \theta < \frac{\pi}{2}\right)$ の角度の位置をはじめて通過する瞬間の、小物体の速さ v を、 m ， g ， φ_0 ， θ ， ℓ ， μ' から必要なものを用いて表せ。

問5 小物体は、 x 座標が負になることなく、ちょうど y 軸上の $y = \ell$ で静止した。 μ' を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

図3のように、円盤をさらに傾けて傾き角を φ_1 ($\varphi_0 < \varphi_1 < \frac{\pi}{2}$) で固定し、円盤を θ の正の向きに回転装置を用いて回転させた。その後、小物体を円盤上のある角度 θ_0 ($0 < \theta_0 < \frac{\pi}{2}$) の角度の位置に静かに置くと、小物体は円盤上をすべりながらその位置で静止した。

問6 このときの $\sin \theta_0$ と、小物体が棒から受ける力の大きさ S' を、 $m, g, \ell, \mu', \varphi_1$ から必要なものを用いて表せ。

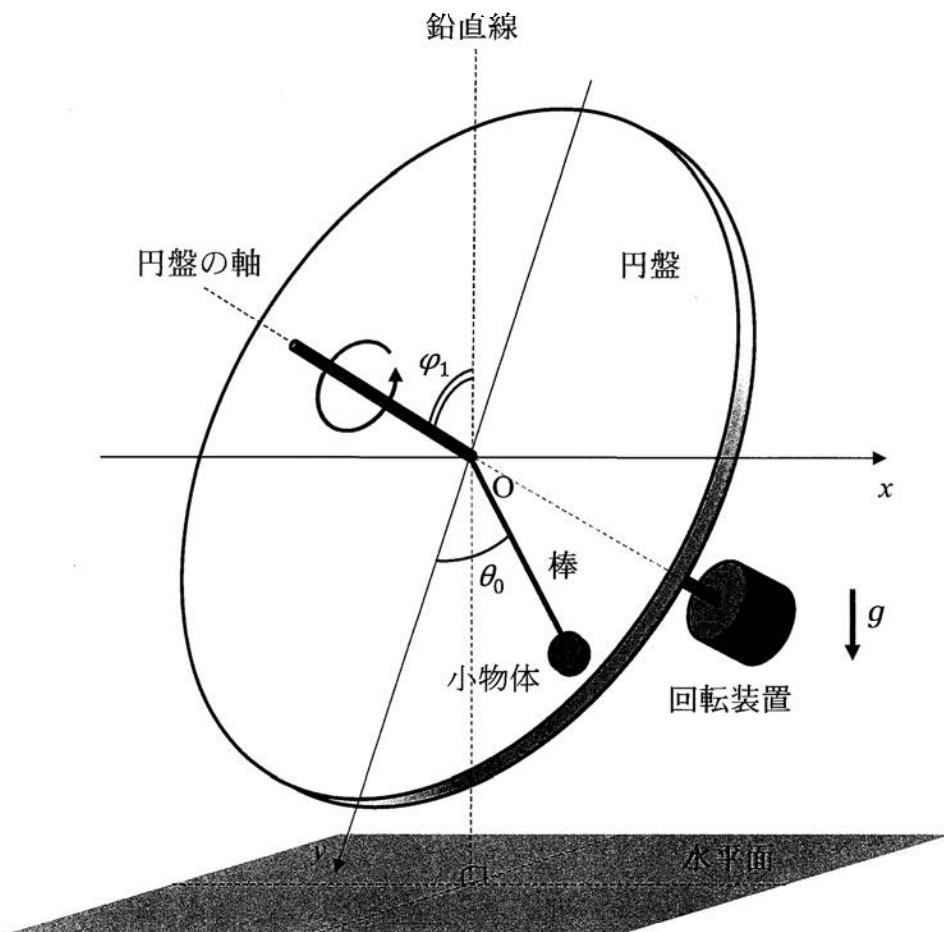


図3

2

熱を低温部分から高温部分に継続的に移動する機関をヒートポンプといい、エアコンなどに応用されている。単原子分子理想気体を使った簡略化したモデルでその原理を考える。

図1のように、物質量 n の単原子分子理想気体（以下、気体と呼ぶ）を、なめらかに動かすことのできるピストンでシリンダー内に封じた。ピストンおよびシリンダーの側面は断熱されておりシリンダーの底面のみが熱を通す。断熱板、絶対温度 T_H の高温の物体、絶対温度 T_L の低温の物体があり、シリンダーを移動することで底面をこれらと接触させることができる。はじめにシリンダーの底面は断熱板と接触しており、気体の絶対温度は T_H であった。これを状態 A とする。シリンダーの移動とピストンの上下により、気体の状態を、図2の圧力-体積図（ p - V 図）に示すように、状態 A→状態 B→状態 C→状態 D→状態 A と 1 サイクル変化させた。

温度は絶対温度で表し、気体定数を R 、気体の定積モル比熱を $\frac{3}{2}R$ とする。また、高温および低温の物体は十分大きな熱容量を持っており、温度は変わらないものとする。

次の問1～問5に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

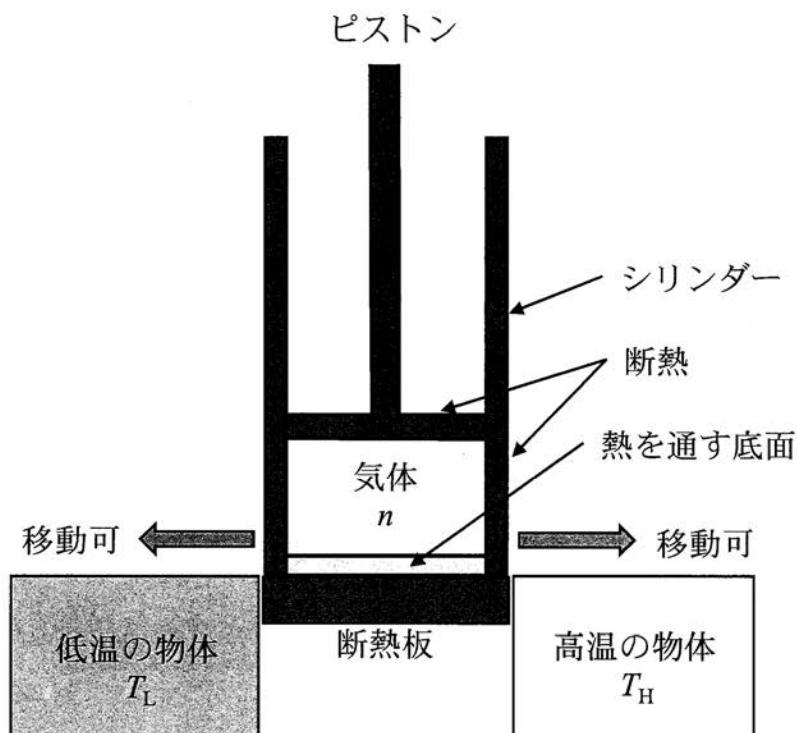


図1

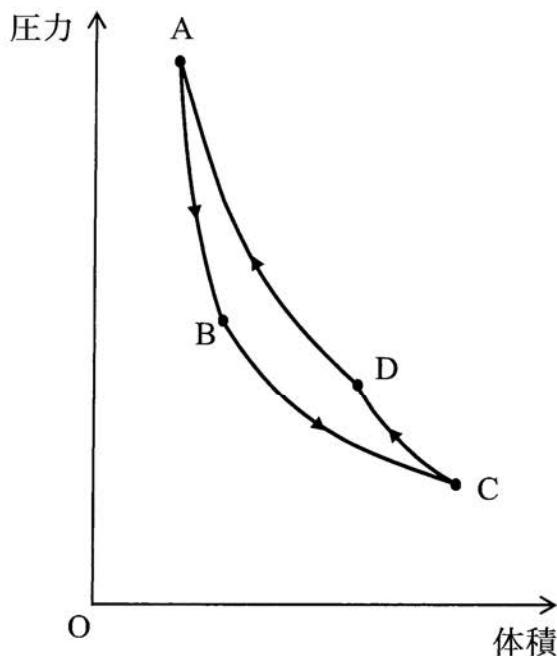


図 2

問 1 状態 A から、シリンダーの底面を断熱板に接触させたまま断熱変化でピストンをゆっくりと引き上げ、気体の温度が T_L の状態 B にした。内部エネルギーの変化 ΔU_{AB} と気体がされた仕事 W_{AB} を、 R ， n ， T_L ， T_H を用いて表せ。

問 2 次に、シリンダーを移動して底面を低温の物体に接触させ、等温変化でピストンをゆっくりと引き上げ、気体がされた仕事が W_{BC} になった状態 C でピストンを止めた。低温の物体から気体が受け取った熱量 Q_{BC} を、 W_{BC} を用いて表せ。

問 3 さらに、シリンダーの底面を断熱板上に再び移動し、断熱変化でピストンをゆっくりと押し込み、気体の温度が T_H の状態 D にした。このとき気体がされた仕事 W_{CD} を、問 1 の W_{AB} を用いて表せ。

問4 最後に、シリンダーの底面を高温の物体に接触させて、等温変化でピストンをゆっくりと押し込み、状態Aに戻した。このとき気体がされた仕事は W_{DA} であった。

この1サイクルで、高温の物体が気体から受け取った熱量 Q_h と、気体がされた仕事の総和 W ($W = W_{AB} + W_{BC} + W_{CD} + W_{DA}$) との比 $\frac{Q_h}{W}$ は、ヒートポンプを暖房機として使ったときの性能を表す係数となる。 $\frac{Q_h}{W}$ を、 W_{BC} 、 W_{DA} を用いて表せ。また、 $W > 0$ であることを用いて、(① 1より大きい、② 1に等しい、③ 1より小さい) のいずれかを、①～③で答えよ。

問5 Q_h と W は、圧力-体積図 ($p-V$ 図) の面積に対応する。 Q_h と W それについて、対応する面積を図3のA, B, C, D, p, q, r, s から必要なものを用いて、たとえば「ABqpで囲まれた面積」などのように表せ。

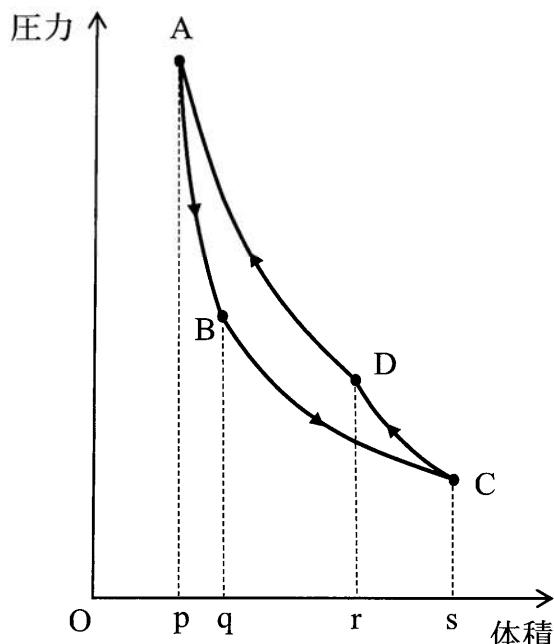


図3

3

図1のように、荷電粒子Aを電場（電界）で加速し磁場（磁界）で進行方向を曲げて、ターゲットとなる物体Tに衝突させる装置がある。装置は真空中にあり、荷電粒子Aは質量が m 、電気量が q ($q > 0$) で、物体Tは質量が M 、電気量が Q ($Q > 0$) である。

はじめ、荷電粒子Aは平行極板の正の極板の位置に静止しており、電位差が V である平行極板間の一様電場から静電気力を受けて運動し、極板の小さな穴から光速より十分小さい速さ v で射出される。その後、磁束密度 B の一様磁場の領域において半径 r で進行方向を 90° 曲げられ、磁場の領域の外に出て物体Tに向かって直進する。荷電粒子Aの運動は、紙面にそった平面のみに限定されている。

平行極板は、極板の大きさに比べて間隔 d が十分小さく、極板の穴も十分小さい。また、一様磁場の領域外での磁場はなく、漏れ出した磁場の影響も無視できる。さらに、電磁波および重力、平行極板と一様磁場の領域での物体Tの電荷の影響は無視できるものとする。クーロンの法則の比例定数を k_0 とし、静電気力による位置エネルギーの基準を無限遠とする。

次の問1～問6に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

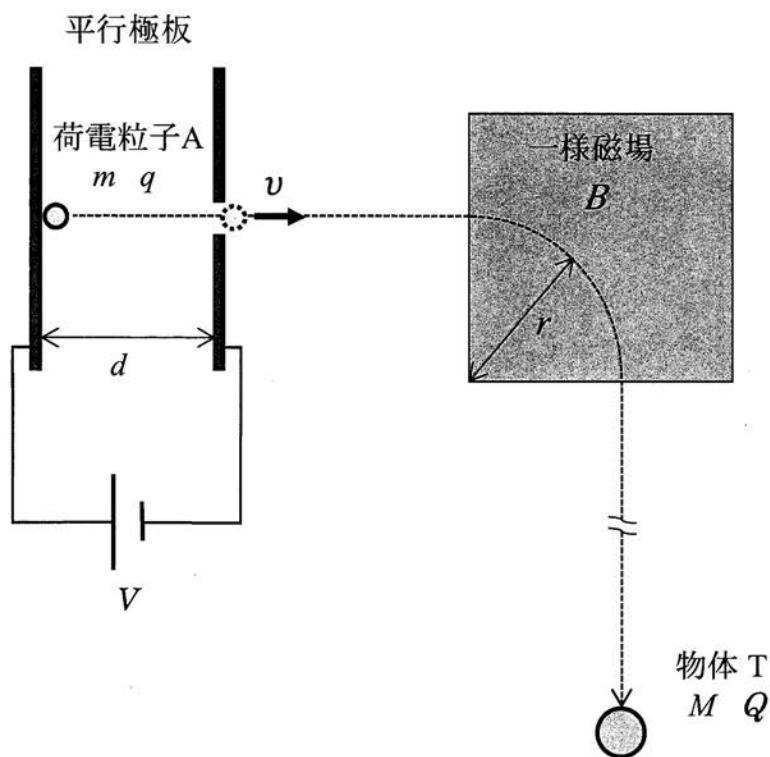


図1

問1 荷電粒子Aの, 平行極板間における加速度の大きさ a を, m , q , V , d を用いて表せ。

問2 極板の穴から射出された直後の荷電粒子Aの速さ v を, m , q , V を用いて表せ。

問3 一様磁場によって, 荷電粒子Aが進行方向を 90° 曲げられたときの磁束密度 B を, m , q , v , r を用いて表せ。また, 磁場の向きは, 紙面に対して, [① 奥から手前, ② 手前から奥], のいずれかを, ①, ②で答えよ。

問4 一様磁場によって, 荷電粒子Aが進行方向を 90° 曲げられた前後について, 荷電粒子Aの運動エネルギーと運動量について考える。

(a) 運動エネルギーは変化しないが, その理由を簡潔に説明せよ。

(b) 運動量の変化の大きさを, m , v を用いて表し, 運動量の変化の向きを, はじめの進行方向からの角度で答えよ。

図2のように、物体Tの中心に向かって荷電粒子Aが入射するように物体Tを置く。物体Tは半径Rの球形で電荷は中心に集中しており、荷電粒子Aの大きさは無視できる。

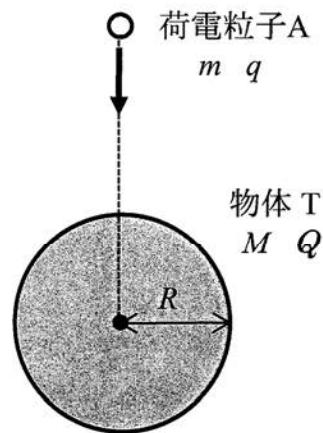


図2

問5 はじめに、物体Tを動かないように固定した状態で荷電粒子Aを衝突させた。荷電粒子Aが物体Tに衝突するための速さ v の最小値 u を、 m 、 q 、 R 、 M 、 Q 、 k_0 から必要なものを用いて表せ。

問6 次に、物体Tを固定せず自由に動くことができる状態で静止させて荷電粒子Aを衝突させた。荷電粒子Aが物体Tに衝突するための速さ v の最小値を u' とするとき、問5の u との比 $\frac{u'}{u}$ を、 m 、 M を用いて表せ。

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 2＞

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
歯学部	13:00~14:20 (80 分)	12 ページ

B12346

——このページは白紙——

——このページは白紙——

1 次の〔I〕, 〔II〕の文章を読み, 以下の問(1)~(6)に答えよ。

〔I〕 全ての染色体は複製起点と呼ばれる領域を持っており, タンパク質の複合体が複製起点内部にある特異的な DNA 配列を認識すると, 結合が起こる。その結果, 複製が DNA に沿って両方向に進行していく。複合体中の DNA ポリメラーゼは新しいヌクレオチドを既存の鎖に連結することでポリヌクレオチド鎖を伸長させる。しかし, この過程はプライマーと呼ばれる短いヌクレオチド鎖がなければ始まらない。ほとんどの生物でこのプライマーは短い 1 本鎖の ア である。

次に DNA ポリメラーゼがプライマーの 3'末端にヌクレオチドを付加していき, DNA の当該領域の複製が完了するまで新しい鎖は伸長を続ける。その後プライマーは分解されてその部位に DNA が付加され, 形成された DNA 断片は別の酵素の働きで連結される。なお, DNA ポリメラーゼは 5'→3' 方向にだけヌクレオチド鎖を伸長することができる。そこで, DNA の 2 本鎖のうち一方の鑄型鎖は, DNA がほどけていく方向に, 連続的に新生鎖が伸長していく。この鎖を イ 鎖と呼ぶ。

もう一方の鑄型鎖は逆向きにしか新生鎖を伸長できない。そこで, DNA がほどけて, ある程度 1 本鎖の部分が長くなると, プライマーが合成された後, DNA ポリメラーゼが, DNA のほどけていく方向とは逆方向に新生鎖を伸長して DNA の断片をつくる。できた断片は ウ という酵素によって, すでにつくられた断片とつながれる。このように, 断片がつくれながら不連続に複製されて新しくできた鎖を エ 鎖という。DNA 複製の過程でつくられる エ 鎖の断片は, 発見者にちなんで オ と呼ばれている。

〔II〕 実験室で DNA を調べたり遺伝子操作を実施したりするためには, DNA 配列のコピーを大量に合成することが必要になる。この DNA の増幅技術を PCR 法という。この方法の主な反応混合物は以下の①~⑤である。

- ① 鑄型として働く 2 本鎖 DNA
- ② 増幅対象となる DNA 配列の両末端に相補的な 2 つのプライマー
- ③ 4 種類のヌクレオチド
- ④ (a) DNA ポリメラーゼ
- ⑤ 適切な塩濃度とともに中性に近い pH を維持するための緩衝液

PCR 法の過程は以下の (i) ~ (iii) を繰り返す。

- (i) 反応混合物を約 95 ℃ に加熱する。
- (ii) 次に約 60 ℃ に温度を下げる。
- (iii) 次に約 72 ℃ にする。

これらを繰り返すことで、目的とする DNA 断片を増幅することができる。

問 (1) 上記の文章の [ア] ~ [オ] に適切な語句を記入せよ。

問 (2) DNA の複製方法には以下の 3 つの仮説が考えられていた。

仮説 1 もとの 2 本鎖 DNA はそのまま残り、新たな 2 本鎖 DNA ができる保存的複製

仮説 2 もとの 2 本鎖 DNA のそれぞれの鎖を鑄型として、新たなヌクレオチド鎖が合成される半保存的複製

仮説 3 もとの 2 本鎖 DNA は分解され、もとの DNA 鎖と新しい DNA 鎖が混在する 2 本鎖 DNA ができる分散的複製

メセルソンとスタールは 1958 年に下記のような実験を行った。

- ① 大腸菌に $^{15}\text{NH}_4\text{Cl}$ を栄養分として与えると、 ^{15}N からなる塩基を持つ重い DNA ができる。
- ② 大腸菌の窒素がほとんど ^{15}N におきかわったところで、 $^{14}\text{NH}_4\text{Cl}$ を含む培地に移して大腸菌をさらに増殖させた。
- ③ 1 回、2 回と分裂を繰り返した菌から DNA を抽出し、遠心分離によってその比重を調べた。

この実験からどのような結果が出て、どの仮説が正しいことが証明されたのか、5 行以内で説明せよ。

問 (3) [II] で述べた PCR 法を用いて, 1500 塩基対の DNA 分子の中に存在する DNA 領域を, プライマーA とプライマーB を用いて増幅することにした。プライマーA の 5'末端は鑄型となる DNA の 250 塩基内側に, プライマーB の 5'末端は鑄型となる DNA の 150 塩基内側に結合する。この DNA 分子を PCR 法で n 回増幅させたら, 1100 塩基対からなる目的とする 2 本鎖の DNA 領域は理論的には何本得られるか, n で表せ。

問 (4) 通常の PCR 法で用いるプライマーは 20 塩基程度とされている。なぜ 20 塩基より少なすぎても, 多すぎてもいけないのか, 2 行以内で説明せよ。

問 (5) PCR 法で用いる下線部 (a) の DNA ポリメラーゼは一般的な酵素とはどのような点で異なっているか, 1 行で説明せよ。

問 (6) DNA の塩基対では A (アデニン) と T (チミン) の対と G (グアニン) と C (シトシン) の対ではどちらの結合が, どういう理由で強いのか, 2 行以内で説明せよ。

2 次の〔I〕～〔III〕の文章を読み、以下の問(1)～(5)に答えよ。

〔I〕 筋肉は円筒状で多核の筋細胞からできている。筋細胞の細胞質にはサルコメアという収縮単位が縦に連なった纖維がつまっている。サルコメアではミオシンフィラメントとアクチンフィラメントが交互に規則正しく配列している。サルコメアはATPを分解する際に発生するエネルギーでミオシンフィラメントとアクチンフィラメントの相対的な滑り運動で収縮する。筋肉の収縮・弛緩は筋細胞内のカルシウムイオンによって調節される。カルシウムイオンは筋小胞体に蓄えられており、収縮時には細胞質に放出され、トロポニンに結合する。(a)トロポニンはカルシウムイオンを結合すると、アクチンフィラメントとミオシンフィラメントとの相互作用を開始させる。弛緩時にはカルシウムイオンは再び筋小胞体に取り込まれ、ミオシンフィラメントとアクチンフィラメントの相互作用が断たれる。

〔II〕 骨格筋の収縮は運動神経によって制御されている。運動神経は、その末端で筋纖維と狭いすきまを隔てて連絡している。この部分をアという。このアで神経伝達物質として使われているアセチルコリンはナトリウムイオンなどを通過させるイオンチャネルを開かせて、筋細胞の興奮を引き起こす。

脊椎動物の骨格筋を取り出し、それに接続する神経を1回刺激すると短い潜伏期の後、0.1秒ほどの収縮が起こる。このような単一の収縮を単収縮という。この刺激を1秒間に50回与えると、一続きの大きな収縮がみられるようになり、この収縮をイという。通常の骨格筋で起こる収縮はイである。

〔Ⅲ〕 筋収縮は大量の ATP を消費する。したがって、収縮を持続するためには ATP を補充しなければならない。その代表的な物質が骨格筋に多く蓄えられている高エネルギー化合物である **ウ** である。**ウ** は酵素の働きで **エ** になり、これに伴って ADP が ATP になる。

骨格筋細胞は血中のグルコースを取り込み **オ** として大量に蓄えている。運動時には交感神経とアドレナリンの作用により **オ** の分解が進み、グルコースを生じる。グルコースは解糖系によりピルビン酸に分解され、その過程で 1 分子のグルコースあたり 2 分子の ATP を作る。

以上の反応は酸素を必要としないため、酸素供給の乏しい場合に利用される。ATP 供給は速やかであるが、短時間で枯渇し、**エ** や **カ** が細胞内に蓄積する。**カ** は血中に拡散し、肝臓に運ばれて再びグルコースに合成される。

運動中は心拍の増加と骨格筋における血管の拡張により筋肉の血流量が増し、酸素の供給も増加する。このような条件ではピルビン酸は細胞小器官のミトコンドリアに入り、クエン酸回路や電子伝達系を経て ATP が合成される。

問 (1) 上記の文章の **ア** ~ **力** に適切な語句を記入せよ。

問 (2) 下線部 (a) でトロポニンがカルシウムイオンと結合すると、どのような変化が起こり、アクチンフィラメントとミオシンフィラメントの相互作用が開始されるのか、4 行以内で説明せよ。

問 (3) カエル筋纖維のサルコメアの長さを変えて、張力を測ると図 1 のようになった。このことから予想されるサルコメアの長さ $2.2 \mu\text{m}$ の時の模式図を書け（ミオシンフィラメントとアクチンフィラメントの位置関係を明らかにすること）。

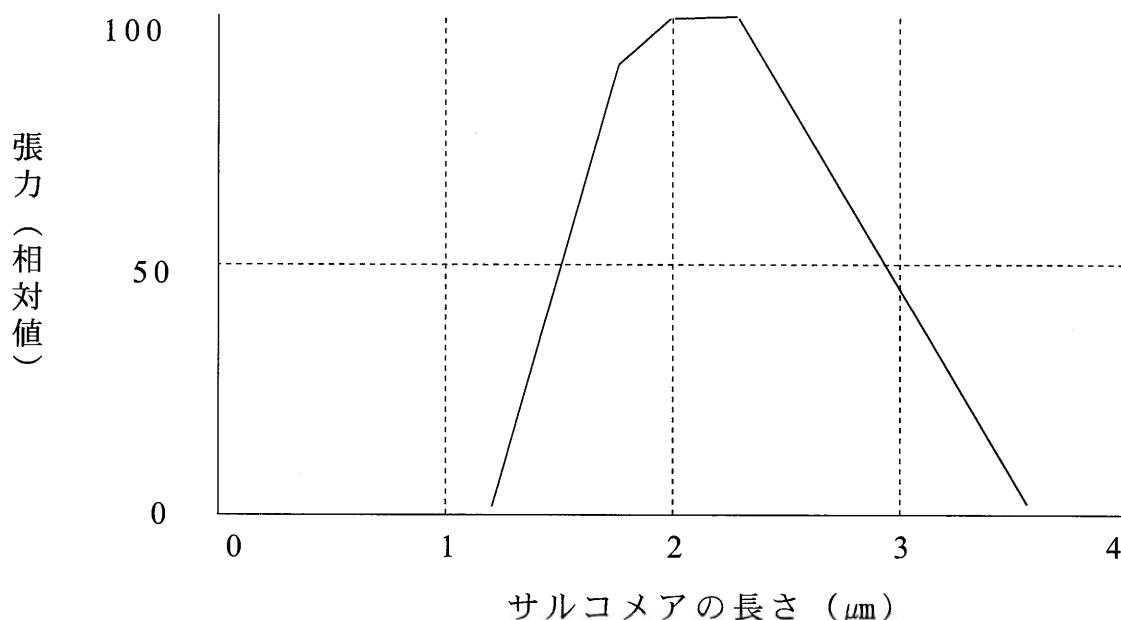


図 1

問 (4) カエルのふくらはぎの筋肉と神経が接する点から 20 mm 離れた A 点と 80 mm 離れた B 点を 1 回だけ刺激したところ、A 点では刺激から 6.3 ミリ秒後に、B 点の刺激では刺激から 8.4 ミリ秒後に筋肉の単収縮が記録された。この神経における興奮の伝導速度 (m/秒) を小数第 2 位を四捨五入して答えよ。

問 (5) 呼吸の電子伝達系において ATP がつくられるしくみを以下のキーワードをすべて使用して、5 行以内で説明せよ。

＜キーワード＞

ミトコンドリア、マトリックス、膜間、電子、ATP 合成酵素、水素イオン、タンパク質複合体、NADH、エネルギー

3 次の〔I〕～〔III〕の文章を読み、以下の問（1）～（6）に答えよ。

〔I〕 オオムギの種子などは主にデンプンを含む大きなアをもつ。このような種子においては、胚で生産されたジベレリンが、アを囲むように存在する糊粉層こふんそうに対して分泌され、アミラーゼなどの酵素の生産を誘導する。こうして生産されたアミラーゼはアに含まれるデンプンを分解し、発芽後の芽生えの成長エネルギー源として利用される。

オオムギの種子を半分に切ると、胚を含んだ側はアミラーゼの誘導が観察され、胚を含まない側はアミラーゼが誘導されない。したがって、胚がジベレリンの供給源であることがわかる。

(a) ジベレリンをある巨大分子に結合させた化合物は、細胞膜を通過できないが、これを糊粉層の細胞のプロトプラスト（細胞壁を取り除いた細胞）に作用させると、アミラーゼの生産を促すことができる。しかし、ジベレリンを糊粉層のプロトプラスト内に注入しても、アミラーゼの誘導は観察されない。

〔II〕 頂芽優勢はオーキシンとサイトカイニンによって制御されている。頂芽優勢に関しては以下の①～⑤の実験結果が得られている。

- ① 頂芽を切除すると、切り口に近い側芽が成長を開始する。
- ② 頂芽の切り口にオーキシンを与えると、頂芽優勢が維持され、側芽の成長は抑制される。
- ③ 頂芽切除後、側芽に直接オーキシンを与えた場合は、頂芽優勢は維持されず、側芽は成長を開始する。
- ④ 頂芽を切除しなくても、オーキシンの(b)極性移動を阻害する物質を茎に与えると、それより下位の側芽は成長を開始する。
- ⑤ 頂芽を切除しなくても、サイトカイニンを直接側芽に与えると、側芽は成長を開始する。

〔Ⅲ〕 多くの植物では花芽形成は日長による制御を受けている。

連続した暗期が **イ** より短いと花芽が形成される植物は長日植物と呼ばれ、 **イ** より長いと花芽が形成される植物は短日植物と呼ばれている。一方、日長時間に関係なく花芽が形成される植物を **ウ** と呼ぶ。

花芽の形成は日長時間を感知した葉で花成ホルモンがつくられ、これが茎頂分裂組織に移動することにより花芽が形成されると考えられている。

シロイヌナズナの変異体による研究で花成ホルモンに関係する遺伝子として *FT* 遺伝子が同定された。日長を感知した葉で *FT* タンパク質が合成され、 (c)この *FT* タンパク質が師管を通して 茎頂分裂組織に移動し、花芽が形成される。

問 (1) 上記の文章の **ア** ~ **ウ** に適切な語句を記入せよ。

問 (2) 種子が休眠することの 2 つの意義について、2 行以内で説明せよ。

問 (3) 下線部 (a) のような現象がなぜ起こるのか、1 行で説明せよ。ただし、ある巨大分子だけではアミラーゼの誘導に関与しないことがわかっている。

問 (4) 〔Ⅱ〕の実験結果から、頂芽優勢はどのようなしくみで起こると考えられているか、3 行以内で説明せよ。

問 (5) 下線部 (b) のオーキシンの極性移動のしくみについて、3 行以内で説明せよ。

問 (6) 下線部 (c) の *FT* タンパク質はどのような働きをするのか、2 行以内で説明せよ。

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験③問題

令和 5 年 11 月 4 日

志願学部／学科	試験時間	ページ数
医学部 保健学科 歯学部 農学部	15:20~16:50 (90 分)	13 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 13 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がない場合は、日本語で答えてください。
- 日本語での字数の指定がある場合は句読点、数字、アルファベット、記号も 1 字として数えてください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」は持ち帰ってください。

——このページは白紙——

C2346

2

402

——このページは白紙——

C2346

1 次の英文を読んで、以下の問い合わせに答えなさい。

Falling birth rates are a major concern for some of Asia's biggest economies. Governments in the region are spending hundreds of billions of dollars trying to reverse the trend. Will it work? Japan began introducing policies to encourage couples to have more children in the 1990s. South Korea started doing the same in the 2000s, while Singapore's first *fertility policy dates back to 1987. China, which has seen its population fall for the first time on 60 years, recently joined the growing club. While it is difficult to quantify exactly how much these policies have cost, South Korean President Yoon Suk-yeol recently said his country had spent more than \$200 billion (£160 billion) over the past 16 years on trying to boost the population. Yet last year South Korea broke its own record for the world's lowest fertility rate, with the average number of babies expected per woman falling to 0.78. (1) In neighbouring Japan, which had record low births of fewer than 800,000 last year, Prime Minister Fumio Kishida has *pledged to double the budget for child-related policies from 10 trillion yen, which is just over 2% of the country's gross domestic product. Globally, while there are more countries that are trying to lower birth rates, the number of countries wanting to increase fertility has more than tripled since 1976, according to the most recent report by the United Nations.

So why do these governments want to grow their populations? Simply put, having a bigger population who can work and produce more goods and services leads to higher economic growth. And while a larger population can mean higher costs for governments, it can also result in bigger tax *revenues. Also, many Asian countries are ageing rapidly. Japan leads the pack with nearly 30% of its population now over the age of 65 and some other nations in the region are not far behind. Compare that with India, which has just overtaken China as the world's most populous nation. More than a quarter of its people are between the age of 10 and 20, which gives its economy huge potential for growth. And when the share of the working age population gets smaller, the cost and burden of looking after the non-working population grow. "Negative population growth has an impact on the economy, and combined that with an ageing population, they won't be able to afford to support the elderly," said Xiujian Peng of Victoria University.

Most of the measures across the region to increase birth rates have been similar: payments for new parents, *subsidised or free education, extra nurseries, *tax incentives and expanded parental leave. But do these measures work? Data for the last few decades from Japan, South Korea and Singapore shows that attempts to boost their populations have had very little impact. Japan's finance ministry has published a study

which said the policies were a failure. It is a view echoed by the United Nations. “We know from history that the types of policies which we call demographic engineering where they try to incentivise women to have more babies, they just don't work,” Alanna Armitage of United Nations Population Fund told the BBC. “We need to understand the underlying determinants of why women are not having children, and that is often the inability of women to be able to combine their work life with their family life,” she added. But in Scandinavian countries, fertility policies have worked better than they did in Asia, according to Ms Peng. “The main reason is because they have a good welfare system and the cost of raising children is cheaper. Their gender equality is also much more balanced than in Asian countries.” Asian countries have ranked lower in comparison in the global gender gap report by the World Economic Forum.

There are also major questions over how these expensive measures should be funded, especially in Japan, which is the world's most *indebted developed economy. Options under consideration in Japan include selling more government bonds, which means increasing its debt, raising its sales tax or increasing *social insurance premiums. The first option adds financial burden to the future generations, while the other two would hit already struggling workers, which could convince them to have fewer children. But Antonio Fatás, professor of economics at *INSEAD says regardless of whether these policies work, they have to invest in them. “Fertility rates have not increased but what if there was less support? Maybe they would be even lower,” he said. (2) Governments are also investing in other areas to prepare their economies for shrinking populations. “China has been investing in technologies and innovations to make up for the declining labour force in order to mitigate the negative impact of the *shrinking population,” said Ms Peng. Also, while it remains unpopular in countries like Japan and South Korea, lawmakers are discussing changing their immigration rules to try to *entice younger workers from overseas. “Globally, the fertility rate is falling so it'll be a race to attract young people to come and work in your country,” Ms Peng added. Whether the money is well spent on fertility policies, these governments appear to have no other choice.

(出典：“Asia is spending big to battle low birth rates — will it work?” June 6, 2023, BBC より一部改変)

from BBC News at bbc.co.uk/news

*fertility : 出生率

*pledge : 約束する

*revenue : 歳入

*subsidise : 補助金を与える

*tax incentives : 税制優遇措置

*indebted : 負債がある

*social insurance premiums : 社会保険料

*INSEAD : 欧州経営大学院

*shrink : 減る

*entice : 呼び込む

問1 下線部(1)を日本語に訳しなさい。

問2 アジア諸国と比べ、スカンジナビア諸国で少子化対策が成功している理由は何か、本文に即して説明しなさい。

問3 下線部(2)の具体例としてあげられているものを、本文に即して説明しなさい。

問4 以下の(a)～(d)のうち、本文の内容から正しいと判断できるものを一つ選び記号で答えなさい。

- (a) 1976年以来、世界的に出生率の向上を望む国は3倍以上に増加している。
- (b) 世界で最も人口の多い国は中国である。
- (c) 税制優遇措置は、日本では人口増加に効果があった。
- (d) 国債の売却は、すでに苦しい状況にある労働者に打撃を与える。

——このページは白紙——

C2346

2 次の英文を読んで、以下の問い合わせに答えなさい。
([1]～[3]はそれぞれ段落番号を表す。)

[1] The traces of genetic material that humans constantly shed wherever they go could soon be used to track individual people, or even whole ethnic groups, scientists said on Monday, warning of a *looming “ethical *quagmire.”

[2] A recently developed technique can glean a huge amount of information from tiny samples of genetic material called (1)environmental DNA, or eDNA, that humans and animals leave behind everywhere — including in the air. The tool could lead to a range of medical and scientific advances, and could even help track down criminals, according to the authors of a new study published in the journal *Nature Ecology & Evolution*. But it also poses a vast range of concerns around consent, privacy and surveillance, they added. Humans spread their DNA — which carries genetic information specific to each person — everywhere, by shedding skin or hair cells, coughing out droplets, or in wastewater flushed down toilets. In recent years, scientists have been increasingly collecting the eDNA of wild animals, in the hopes of helping threatened species. For the new research, scientists at the University of Florida’s Whitney Laboratory for Marine Bioscience had been focused on collecting the eDNA of endangered sea turtles. But the international team of researchers inadvertently collected a massive amount of human eDNA, which they called “human genetic bycatch.” David Duffy, a wildlife disease genomic professor at the Whitney Laboratory who led the project, said they were “consistently surprised” by the amount and quality of the human eDNA they collected. “In most cases the quality is almost equivalent to if you took a sample from a person,” he said. (2)The scientists collected human eDNA from nearby oceans, rivers and towns, as well as from areas far from human settlements. Struggling to find a sample not *tainted by humans, they went to a section of a remote Florida island inaccessible to the public. It was free of human DNA — at least until a member of the team walked barefoot along the beach. They were then able to detect eDNA from a single footprint in the sand. In Duffy’s native Ireland, the team found human DNA all along a river, with the exception of the remote mountain stream at its source. Taking samples from the air of a veterinary hospital, the team captured eDNA that matched the staff, their animal patient and viruses common in animals.

[3] One of the study’s authors, Mark McCauley of the Whitney Laboratory, said that by sequencing the DNA samples, the team was able to identify if a person had a greater risk of diseases such as *autism and *diabetes. “All of this very personal, ancestral and health-related data is freely available in the environment, and it’s simply floating around us in the air right now,” McCauley told an online news conference. “We specifically did not examine our *sequences in a way that we would be able to pick out specific individuals

because of the ethical issues,” he said. But that would ⁽³⁾ “definitely” be possible in the future, he added. “The question is how long it takes until we’re at that stage.” The researchers emphasized the potential benefits of collecting human eDNA, such as tracking cancer *mutations in wastewater, discovering long-hidden archaeological sites or revealing the true *culprit of a crime using only the DNA they left in a room. Natalie Ram, a law professor at the University of Maryland not involved in the research, said the findings “should raise serious concern about genetic privacy and the appropriate limits of policing.” “Exploiting involuntarily shed genetic information for investigative aims risks putting all of us under *perpetual genetic surveillance,” she wrote in a commentary on the study. The authors of the study shared her concerns. McCauley warned harvesting human eDNA without consent could be used to track individual people or even target “vulnerable populations or ethnic minorities.” ⁽⁴⁾It is why the team decided to sound the alarm, they said in a statement, calling for policymakers and scientists to start working on regulation that could address such issues.

(Juliette Collen, “New threat to privacy? Scientists sound alarm about DNA tool”, The Japan Times, 2023/5/16, AFP-JIJI.一部改編)

*loom：迫る

*quagmire：泥沼

*taint：汚染する

*autism：自閉症

*diabetes：糖尿病

*sequence：配列

*mutation：突然変異

*culprit：犯罪者

*perpetual：永続的

問1 下線部 (1) の environmental DNA, or eDNA について, ① eDNA とは何か, また
② eDNA は何に役立つ可能性があるか, 段落[2]で述べられている内容に即して, それ
ぞれ30字程度で説明しなさい。

問2 下線部 (2) を日本語に訳しなさい。

問3 下線部 (3) について, 何が “definitely” be possible in the futureなのか, 本文に
即して説明しなさい。

問4 下線部 (4) の It が何を示しているか, 本文に即して説明しなさい。

——このページは白紙——

C2346

11

411

3 次の英文[I]と[II]を読んで、以下の問い合わせに答えなさい。

[I] The 19th century landscape paintings hanging in London's Tate Britain Museum looked awfully familiar to climate physicist Anna Lea Albright. Artist Joseph Mallord William Turner's signature way of *shrouding his *vistas in fog and smoke reminded Albright of her own research tracking air pollution.

"I started wondering if there was (1) a connection," says Albright, who had been visiting the museum on a day off from the Laboratory for Dynamical Meteorology in Paris. After all, Turner — a forerunner of the impressionist movement — was painting as Britain's industrial revolution gathered steam, and a growing number of *belching manufacturing plants earned London the nickname "The Big Smoke."

Turner's early works, such as his 1814 painting "Apulia in Search of Appullus," were rendered in sharp details. Later works, like his celebrated 1844 painting "Rain, Steam and Speed - the Great Western Railway," embraced a dreamier, *fuzzier aesthetic. Perhaps, Albright thought, this *burgeoning painting style wasn't a purely artistic phenomenon. Perhaps Turner and his successors painted exactly what they saw: their *environs becoming more and more obscured by *smokestack haze.

To find out how much realism there is in impressionism, Albright teamed up with Harvard University climatologist Peter Huybers, who's an expert in reconstructing pollution before instruments existed to closely track air quality. Their analysis of nearly 130 paintings by Turner, Paris-based impressionist Claude Monet and several others tells a tale of two modernizing cities.

Low contrast and whiter *hues are *hallmarks of the impressionist style. They are also hallmarks of air pollution, which can affect how a distant scene looks to the naked eye. (2) Tiny *airborne particles, or *aerosols, can absorb or scatter light. That makes the bright parts of objects appear dimmer while also shifting the entire scene's color toward neutral white.

The artworks that Albright and Huybers investigated, which span from the late 1700s to the early 1900s, decrease in contrast as the 19th century progresses. That trend tracks with an increase in air pollution, estimated from historical records of coal sales, Albright and Huybers report in (3) the Feb. 7 Proceedings of the National Academy of Sciences.

[II] Albright and Huybers distinguished art from aerosol by first using a mathematical model to analyze the contrast and color of 60 paintings that Turner made between 1796 and 1850 as well as 38 Monet works from 1864 to 1901. They then compared the findings to *sulfur dioxide emissions over the century, estimated from the trend in the annual amount of coal sold and burned in London and Paris. When sulfur dioxide reacts with molecules in the atmosphere, aerosols form.

"Our results indicate that [19th century] paintings capture changes in the *optical environment associated with increasingly polluted atmospheres during the industrial revolution," the researchers write. As sulfur dioxide emissions increased over time, the amount of contrast in both Turner's and Monet's paintings decreased. However, paintings of Paris that Monet made from 1864 to 1872 have much higher contrast than Turner's last paintings of London made two decades earlier.

The difference, Albright and Huybers say, can be attributed to the much slower start of the industrial revolution in France. Paris' air pollution level around 1870 was about what London's was when Turner started painting in the early 1800s. It confirms that the similar *progression in their painting styles can't be chalked up to coincidence, but is guided by air pollution, the pair conclude.

The researchers also analyzed the paintings' *visibility, or the distance at which an object can be clearly seen. Before 1830, the visibility in Turner's paintings averaged about 25 kilometers, the team found. Paintings made after 1830 had an average visibility of about 10 kilometers. Paintings made by Monet in London around 1900, such as "Charing Cross Bridge," have a visibility of less than five kilometers. That's similar to estimates for modern-day megacities such as Delhi and Beijing, Albright and Huybers say.

To strengthen their argument, the researchers also analyzed 18 paintings from four other London- and Paris-based impressionists. Again, as outdoor air pollution increased over time, the contrast and visibility in the paintings decreased, the team found. What's more, the decrease seen in French paintings lagged behind the decrease seen in British ones.

Overall, air pollution can explain about 61 percent of contrast differences between the paintings, the researchers calculate. In that respect, "different painters will paint in a similar way when the environment is similar," Albright says. "But I don't want to overstep and say: Oh, we can explain all of impressionism."

(Source: Bas den Hond, Science News, February 26, 2023. Used with permission.)

(注)

*shroud : 覆う	*vista : 風景	*belch : 吹き出す
*fuzzier : fuzzy (ぼやけた) の比較級		*burgeon : 芽生える
*environ : (…を) 取り巻く	*smokestack haze : 煙突の薄煙	
*hue : 色合い	*hallmark : 特徴的なこと	
*airborne : 空中の	*aerosol : エアロゾル	
* sulfur dioxide : 二酸化硫黄	*optical : 視覚の	
*progression : 発展, 進み	*visibility : 視程	

問1. 下線部(1)の a connection は何を指すか, [I] の内容に即して説明しなさい。

問2. 下線部(2)を日本語に訳しなさい。

問3. 下線部(3)の英文雑誌で報告されている研究成果に至る過程で Albright and Huybers はどのようなことを行ったか, [II] の内容に即して, 簡潔に 4 点説明しなさい。

令和 6 年度 AO 入試問題集 (工学部)

公表期限：2027 年 3 月末

東北大学アドミッション機構

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験①問題

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
工 学 部	9:30~10:50 (80 分)	6 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 6 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1 枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

——このページは白紙——

-----このページは白紙-----

1 以下の問いに答えよ。

(1) 1, 2, 3, 4, 5, 6 の目が等しい確率で出る 1 個のさいころを 3 回続けて投げる。はじめの 2 回投げて出た 2 つの目が連續する 2 つの数であり、続けて 3 回目に投げて出た目も含めると連續する 3 つの数となる確率を求めよ。ただし、出る目の順番は問わない。

(2) $x > 1$ とする。次の不等式を満たす x の値の範囲を求めよ。

$$\log_3 x + \log_x 9 \leq \frac{9}{2}$$

(3) 次の定積分の値を求めよ。

$$\int_{-1}^1 |x(x+1)^2| dx$$

〔2〕 三角形ABCにおいて、 $AB = 7$ 、 $BC = 5$ 、 $CA = 3$ とする。辺BCを4:1に内分する点をDとする。頂点Bから直線ACに垂線を引き、直線ACとの交点をEとする。 $\overrightarrow{AB} = \vec{b}$ 、 $\overrightarrow{AC} = \vec{c}$ とするとき、次の問いに答えよ。

- (1) 内積 $\vec{b} \cdot \vec{c}$ の値を求めよ。
- (2) 線分AEの長さを求め、 \overrightarrow{AE} を \vec{c} を用いて表せ。
- (3) 三角形ABCの面積を求めよ。
- (4) 点Eに関して点Cと対称な点Fとする。直線ADと直線BFとの交点をGとするとき、三角形BDGの面積を求めよ。

3

xy 平面上の曲線 C_0 が媒介変数 t を用いて次のように表される。

$$\begin{cases} x = 3 \cos t + \sin t \\ y = \cos t + 3 \sin t \end{cases} \quad (0 \leq t < 2\pi)$$

また、曲線 C_0 を原点の周りに $\frac{\pi}{4}$ だけ回転した曲線を C_1 とする。
次の問い合わせよ。

- (1) 媒介変数 t を用いずに、 C_0 を表す x と y との関係式を求めよ。
- (2) C_1 を表す x と y との関係式を求めよ。
- (3) C_0 の $y \geq 0$ の部分と x 軸とで囲まれた領域 E を図示し、 E の面積を求めよ。
ただし、 E の境界線はすべて含むものとする。

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験② 封筒

令和 5 年 11 月 4 日

志願学部／学科／専攻	試験時間	問題冊子数
工 学 部	13:00~14:20 (80 分)	2 冊

注意事項

- 試験開始の合図があるまで、この封筒を開いてはいけません。
- この封筒には、「問題冊子」2冊、「解答用紙」2種類、「メモ用紙」1冊が入っています。
- 筆記試験②は、＜必答問題1＞、＜必答問題2＞の2冊からなります。
※ ＜必答問題1＞、＜必答問題2＞を両方とも解答してください。両方解答しなかった場合は、失格となります。
- ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。問題冊子のホチキスは外さないでください。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」は1枚につき1か所の所定の欄に、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は、「解答用紙」は全て回収しますので持ち帰ってはいけません。
本封筒、「問題冊子」及び「メモ用紙」は持ち帰ってください。

令和 6 年度（2024 年度）東北大学
AO 入試（総合型選抜）Ⅱ期

筆記試験②

＜必答問題 1 ＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
工 学 部	13:00～14:20 (80 分)	14 ページ

——このページは白紙——

——このページは白紙——

必要があれば次の数値を用いなさい。

気体定数: $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$

絶対零度: $-273 \text{ }^\circ\text{C}$

アボガドロ定数: $6.0 \times 10^{23} / \text{mol}$

ファラデー一定数: $9.65 \times 10^4 \text{ C/mol}$

原子量: H = 1.0 Li = 6.9 C = 12.0 O = 16.0 Cl = 35.5 K = 39.1

1 気体の溶解に関する文〔I〕と蒸気圧に関する文〔II〕を読んで、問1から問5に答えなさい。

〔I〕体積を自由に変えることのできるピストン付きの容器に、水 1.0 L と気体A 0.30 mol のみを入れて、気体Aと水を合わせた容器内の体積が 3.0 L になるように固定具でピストンを固定した（図1）。実験のあいだ、容器の温度は常に 20 °C に保たれていた。気体Aの水への溶解はヘンリーの法則に従い、

20 °C で水に接している $1.0 \times 10^5 \text{ Pa}$ の気体Aは、水 1.0 L に $3.9 \times 10^{-2} \text{ mol}$ 溶けることとする。気体Aは今回の実験における温度、圧力のもとで凝縮することではなく、理想気体としてふるまい、また、ピストンの質量、水の蒸気圧は無視する。

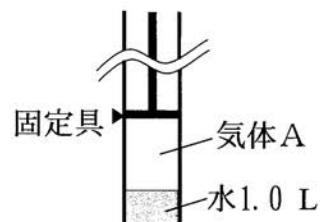


図 1

問1 容器内の気体Aの圧力を P [Pa] として(1)から(3)に答えなさい。

(1) 水 1.0 L に溶解している気体Aの物質量 n_s [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。

$$n_s = \boxed{} \times P$$

(2) 水の上の空間に存在する気体Aの物質量 n_g [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。ただし、容器内の気体部分の体積は 2.0 L とし、気体定数 $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$ と絶対温度 293 K の積を $2.43 \times 10^6 \text{ Pa} \cdot \text{L}/\text{mol}$ として計算しなさい。

$$n_g = \boxed{} \times P$$

(3) P [Pa] の値を求め、その値を有効数字 2 桁で書きなさい。

問 2 溫度を 20°C に保ったまま、ピストンの固定をはずして自由に動く状態にしたところ、容器内の気体Aの圧力が容器にかかる大気圧 ($1.0 \times 10^5 \text{ Pa}$) と等しくなってピストンが止まった。この状態を状態1とする(図2左)。状態1で水に溶けている気体Aの物質量を n_1 [mol] とする。次に温度を 20°C に保ったまま、状態1のピストンにおもりを載せ、容器内の気体Aの圧力を $2.0 \times 10^5 \text{ Pa}$ とした状態を状態2とする(図2右)。状態2で水に溶けている気体Aの物質量を n_2 [mol] とする。(1) および(2)に答えなさい。ただし、固定をはずしたピストンは摩擦なく動くものとする。

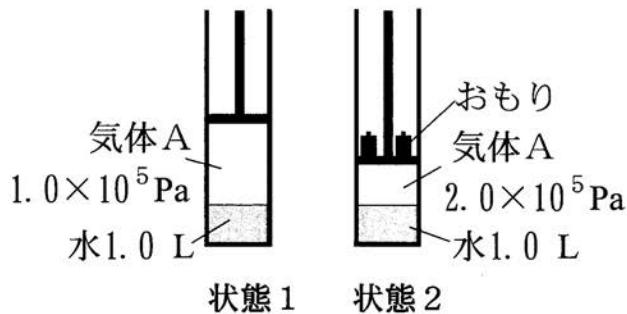


図2

(1) n_1 [mol] の気体Aの体積を $1.0 \times 10^5 \text{ Pa}$ のもとで、 n_2 [mol] の気体Aの体積を $2.0 \times 10^5 \text{ Pa}$ のもとで測定したところ、それぞれ V_1 [L], V_2 [L] であった。 V_1 と V_2 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積測定時の温度はいずれも 20°C とする。

① $2V_1 = V_2$ ② $V_1 = V_2$ ③ $V_1 = 2V_2$

(2) n_1 [mol] の気体Aと n_2 [mol] の気体Aの体積を同じ圧力のもとで測定したところ、それぞれ V_3 [L], V_4 [L] であった。 V_3 と V_4 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積測定時の温度はいずれも 20°C とする。

① $2V_3 = V_4$ ② $V_3 = V_4$ ③ $V_3 = 2V_4$

〔II〕 体積を自由に変えることのできるピストン付きの容器に、水 0.10 mol と水素 0.10 mol のみを入れて体積が 3.0 L になるようピストンを固定し、温度を 90 °C に保つて放置した。_(a) 十分に放置した段階で、容器

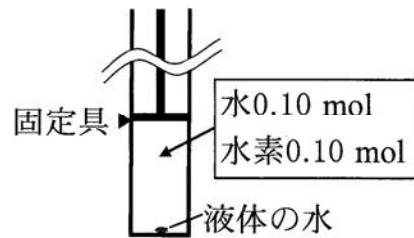


図 3

内には水の一部が液体として存在しており、このときの水素分圧は $1.0 \times 10^5 \text{ Pa}$ であった (図 3)。また、図 3 の容器にかかる大気圧は $1.0 \times 10^5 \text{ Pa}$ であり、90 °C での水の蒸気圧 (飽和蒸気圧) は $7.0 \times 10^4 \text{ Pa}$ であった。

次に、温度を 90 °C に保ったまま、ピストンの固定をはずして可動状態とし、ピストンを引いて体積をゆっくりと増加させ、_(b) 液体の水がすべて蒸発した瞬間にピストンを再び固定した。さらに、温度を 90 °C に保ったまま、ピストンの固定を再びはずして自由に動く状態とし、静止するまで放置することにより、_(c) 容器内部を大気圧と等しい圧力とした。

また、図 3 の装置とは別に、発火装置が付いた体積が 3.0 L の密閉容器 (体積一定) を準備し、この容器に_(d) 水素 0.10 mol と酸素 0.10 mol のみを入れ、水素を完全燃焼させたのち、容器内部の温度を 90 °C に保った。

ピストンの質量および発火装置の体積は無視してよく、固定を外すとピストンは摩擦なく動くこととする。また、水素と酸素の水への溶解および液体の水の体積は無視し、気体は理想気体であるとする。

問 3 下線部 (a) の段階について、次の (1) および (2) に答えなさい。

- (1) 容器内の全圧は何 Pa か。その値を有効数字 2 桁で書きなさい。
- (2) 気体として存在する水は何 mol か。その値を有効数字 2 桁で書きなさい。

問 4 下線部 (b) の段階および下線部 (c) の段階について、次の (1) および (2) に答えなさい。

- (1) 下線部 (b) の段階の容器内の全圧は何 Pa か。その値を有効数字 2 桁で書きなさい。
- (2) 下線部 (c) の段階の容器の体積は何 L か。その値を有効数字 2 桁で書きなさい。

問 5 下線部 (d) において、容器内部の圧力は何 Pa になるか。その値を有効数字 2 桁で書きなさい。

2 次の文章〔I〕, 〔II〕および〔III〕を読み, 問1から問8に答えなさい。

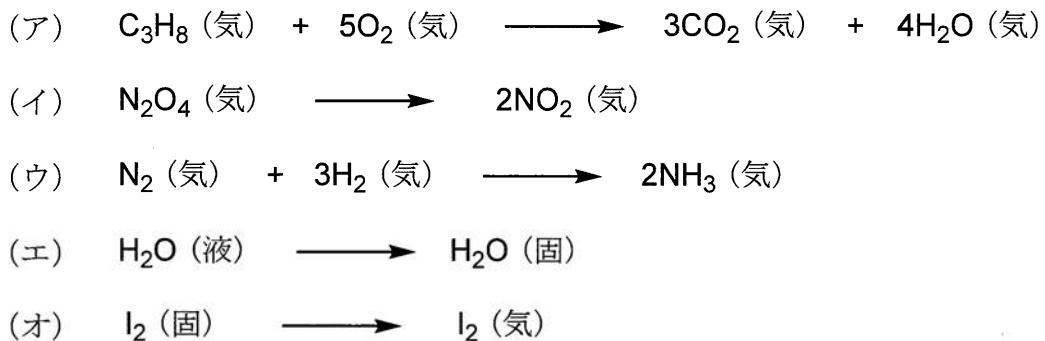
〔I〕 ある反応が進行するかどうかは, その反応の活性化工エネルギーが正反応も逆反応も十分に速く起こるほど低い場合には, 次の2つの要因によって決まる。なお, 以下の文章では融解や溶解などの状態の変化も広義の反応に含めて述べる。

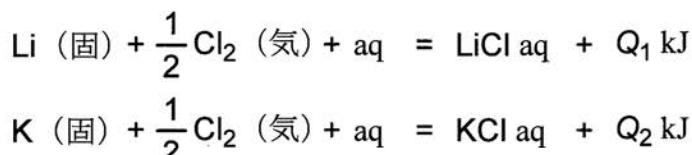
1つの要因は, 反応物から生成物に変化する際の内部エネルギーの変化である。内部エネルギーとは, いま観察者が注目している部分(これを系という)がもつ全エネルギー, すなわち運動エネルギーや結合エネルギーの総和のことである。一般に内部エネルギーが小さいほどその系は安定である。この変化の過程で系の内部エネルギーが減少する場合には, 系はその分のエネルギーを熱として系の外部に放出するので発熱反応となり, また生成物は反応物よりも安定になるので, 反応は自発的に進行しやすい。逆に, 系の内部エネルギーが増加する場合には, その分のエネルギーを系の外部から取り込むので吸熱反応となり, 生成物は反応物よりも不安定になるので反応は進行しにくい。

もう1つの要因は, 反応物から生成物に変化する際の系の乱雑さの変化である。反応によって系の乱雑さが増加する場合には, その反応は自発的に進行しやすいことが知られている。逆に, 反応によって系の乱雑さが減少する場合には, その反応は進行しにくい。ここで, 系の乱雫さが増加する変化とは, (a)固体から液体へ(融解), 液体から気体へ(気化)などの状態変化, (b)分離されていた2つの物質が均一に混じり合う変化(気体の混合, 固体の溶媒への溶解など), (c)化学反応において反応物より生成物の方が分子の数が増える変化などである。

ある反応において, 上記2つの要因の効果が互いに強め合う場合には, 反応は不可逆となり, 自発的に進行するか, または全く進行しないかのどちらかとなる。一方, 2つの要因の効果が互いに弱め合う場合には, 反応は可逆となり, 自発的に進行するかどうかは, その反応条件で2つの要因のどちらが大きいかによって決まる。たとえば, 反応の進行に対して, 反応による内部エネルギーの増加が与える効果が, 乱雫さの増加が与える効果より大きければ, その反応は自発的には進行しないが, 小さければ自発的に進行する。

問1 次の反応 (ア) から (オ) は、それぞれ下の表の反応の分類 A から D のどれにあてはまるか。解答欄に A から D の記号を記入しなさい。なお、これらの反応の最初と最後で系の温度は同じであるとする。




表 熱の出入りと乱雑さの変化による反応の分類

反応の分類	熱の出入り	乱雑さの変化
A	発熱	増加
B	吸熱	減少
C	発熱	減少
D	吸熱	増加

問2 LiCl (固) および KCl (固) の 25°C での水への溶解熱はそれぞれ 37.1 kJ/mol

および -17.2 kJ/mol である。次の (1) および (2) に答えなさい。

(1) LiCl (固) および KCl (固) の 25°C での生成熱はそれぞれ 408.8 kJ/mol および 435.9 kJ/mol である。次の熱化学方程式の Q_1 と Q_2 を比べ、大きい方の値を求めて小数第1位まで答えなさい。なお、aq は溶媒としての多量の水を、化学式の後に付けた aq は水溶液を表す。

(2) KCl (固) の水への溶解は吸熱反応であるが、自発的に進行する。その理由を「内部エネルギー」および「乱雑さ」という語句を用いて 40~50字程度で説明しなさい。

〔II〕 塩化リチウムおよび塩化カリウムの結晶はいずれも塩化ナトリウム型構造（図1）をとっている。塩化リチウムおよび塩化カリウムの融点はそれぞれ $613\text{ }^{\circ}\text{C}$ および $776\text{ }^{\circ}\text{C}$ であるが、塩化リチウムと塩化カリウムを塩化リチウム : 塩化カリウム = 6:4 の物質量比で含む均一な混合物は、 $450\text{ }^{\circ}\text{C}$ では融解し液体となっている。この融解している塩、すなわち溶融塩を溶融塩 E とする。

溶融塩 E 100.0 g を $450\text{ }^{\circ}\text{C}$ に保ち、適切な材質の電極 X および電極 Y を挿入して電極 X と電極 Y との間に 3.6 V の電圧をかけたところ、電極 X 上にはリチウム単体（融点 $181\text{ }^{\circ}\text{C}$ ）が液体として生成し、電極 Y 上には塩素が気体として発生した。液体のリチウムの密度は溶融塩 E の密度よりも小さいため、生成したリチウムは溶融塩 E に浮かんでくるので、これを塩素と接触させないようにして集めることによりリチウム単体が得られた。なお、この電気分解の間に塩化カリウムは変化せず、また溶融塩 E は液体の状態を保っていたとする。

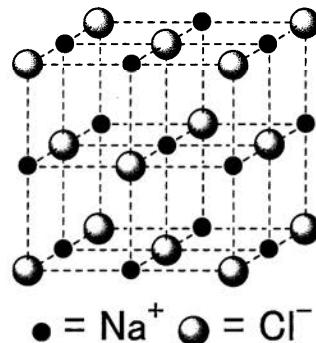


図1 塩化ナトリウム型構造

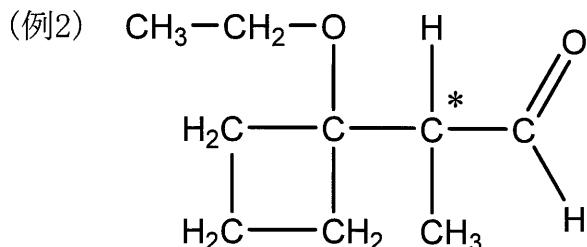
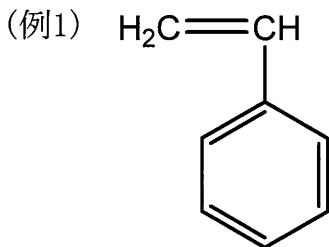
問3 塩化カリウム結晶の単位格子1個当たりの質量は何 g か。その数値を有効数字2桁で答えなさい。

問4 下線部において、電極 X および電極 Y のうち一方は陽極、もう一方は陰極である。（ア）陽極上および（イ）陰極上で起こる反応を、それぞれ電子（ e^- ）を含むイオン反応式で書きなさい。

問5 電極 X と電極 Y との間に 5.0 A の一定電流が 2.0 時間 流れたとすると、得られるリチウム単体の物質量は何 mol か。その数値を有効数字2桁で答えなさい。

[III] (a) 酸化物には、水と反応させて水溶液としたときに、その水溶液が酸性を示すものから塩基性を示すものまで様々なものがある。また、水に溶けない酸化物でも、酸や塩基の水溶液と反応して溶けるものがある。たとえば、(b) 酸化アルミニウムは両性酸化物と呼ばれ、強酸とも強塩基とも反応して溶ける。また、二酸化ケイ素は常温ではほとんどの酸や塩基に対して安定であるが、(c) フッ化水素酸（フッ化水素の水溶液）とは反応して溶ける。

問6 下線部(a)に関連して、下の(ア)から(オ)に示す酸化物 0.1 mol を水 1 L に溶かし、得られた水溶液の pH を比べたとき、pH が最も低いもの、2番目に低いものおよび3番目に低いものを下の(ア)から(オ)の中からそれぞれ選び、それらの記号を pH が低い順に、左から右に列記しなさい。



(ア) BaO (イ) SO₃ (ウ) Na₂O (エ) P₄O₁₀ (オ) CO₂

問7 下線部(b)に関して、次の反応(1)および(2)のイオン式を含まない化学反応式をそれぞれ書きなさい。

- (1) 酸化アルミニウムと塩酸との反応
- (2) 酸化アルミニウムと水酸化ナトリウム水溶液との反応

問8 下線部(c)で起こる反応のイオン式を含まない化学反応式を書きなさい。

3 次の問1から問4に答えなさい。構造式や不斉炭素原子の表示(*)を求められた場合には、(例1) および(例2) にならって書きなさい。

問1 示性式 $\text{C}_4\text{H}_9\text{OH}$ で表されるアルコールの構造式を図1に示す。これらの中で、下の条件(1)から(4)の各々に当てはまるアルコールをAからDの中から選び、その記号を解答欄に書きなさい。なお、それぞれの条件において、解答は1つとは限らない。

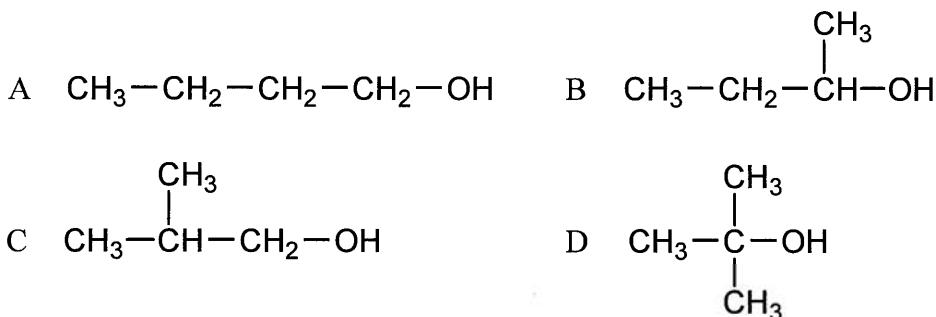


図1

- (1) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、ケトンを生成するアルコール
- (2) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、カルボン酸を生成するアルコール
- (3) 酸を加えて加熱し、分子内脱水反応を起こさせて生じるアルケンが、エチル基を含まないアルケンのみであるアルコール
- (4) ヨウ素と水酸化ナトリウム水溶液を加えて反応させると、 CHI_3 が主要生成物の1つとして生じるアルコール

問2 ベンゼンの反応に関する次の文章を読み、下の(1)から(3)に答えなさい。

ベンゼンに濃硫酸と濃硝酸を加えて 60 °Cで反応させると、水より密度が高く水に溶けない無色から淡黄色の液体である **A** が生成する。また、^(a) ベンゼンと濃硫酸との反応では、水溶性のベンゼンスルホン酸が生成する。触媒として塩化鉄(Ⅲ)を用いて、ベンゼンを塩素と反応させると、クロロベンゼンが生成する。これら 3 つの反応は **ア** 反応に分類される。

一方、紫外線を照射しながらベンゼンと塩素とを反応させると、**B** が生成する。また、ベンゼンを白金やニッケルなどを触媒として圧力をかけた水素と反応させると、環状化合物 C_6H_{12} が生成する。これら 2 つの反応は **イ** 反応に分類される。

(1) 空欄 **A** および **B** に入る化合物を構造式で書きなさい。

(2) 空欄 **ア** および **イ** に入る最も適切な語句を、下の枠の中から選んで書きなさい。

脱離	付加	分解	重合	置換
----	----	----	----	----

(3) 下線部 (a) の反応の化学反応式を書きなさい。その際、芳香族化合物は構造式で書きなさい。

問3 クロロベンゼン、フェノール、安息香酸およびアニリンを含むジエチルエーテル溶液Cが分液ロートに入っている。この溶液Cから、それぞれ次の化合物(1)と(2)のみを分離したい。いずれの場合も、下の(ク)を最後の操作として行うこととし、それ以前に行うすべての操作を、下の〔操作〕の中の(ウ)から(キ)の中から選んで、その操作の順番に左から右に記号を列記しなさい。なお、(ク)より前に行う操作は、(1)では2つ、(2)では3つである。

(1) アニリン

(2) フェノール

〔操作〕

(ウ) 溶液Cに希塩酸を加えて振り混ぜ、分離した下層を流し出す。

(エ) 溶液Cに炭酸水素ナトリウム水溶液を加えて振り混ぜ、分離した下層を流し出す。

(オ) 下層を流し出して残った上層に、水酸化ナトリウム水溶液を加えて振り混ぜ、分離した下層を流し出す。

(カ) 流し出した下層を別の分液ロートに入れる。それに希塩酸を加えて酸性にした後、ジエチルエーテルを加えて振り混ぜ、分離した下層を流し出す。

(キ) 流し出した下層を別の分液ロートに入れる。それに水酸化ナトリウム水溶液を加えて塩基性にした後、ジエチルエーテルを加えて振り混ぜ、分離した下層を流し出す。

〔最後の操作〕

(ク) 下層を流し出して残った上層をフラスコに移し、溶媒を蒸発させて除く。

問4 次の指定された条件 (1) から (4) を満たす有機化合物のうち、不斉炭素原子を 1 個もつものの構造式をそれぞれ 1 つずつ書きなさい。不斉炭素原子には*印を付けなさい。

- (1) 分子式 C_7H_{16} をもち 3 個の炭素と結合している炭素を 2 個含むアルカン
- (2) 分子式 $C_5H_{12}O$ をもつエーテル
- (3) 分子式 C_5H_8O をもち四員環構造（4 個の原子からなる環状構造）をもつケトン
- (4) 分子式 $C_3H_6O_3$ をもつヒドロキシ酸

令和 6 年度（2024 年度）東北大学

AO入試（総合型選抜）Ⅱ期

筆記試験②

＜必答問題 2 ＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
工 学 部	13:00～14:20 (80 分)	13 ページ

B2456

——このページは白紙——

——このページは白紙——

1

図1のように、表面のあらい円盤があり、円盤は軸を中心に回転装置で回転することができるようになっている。長さ ℓ の軽くて伸び縮みしない棒の一端に質量 m の小物体を取り付け、他端を円盤の軸になめらかに自由に動くことができるよう取り付けた。小物体と円盤との間の静止摩擦係数は μ 、動摩擦係数は μ' であり、棒と円盤との間に摩擦力ははたらかない。円盤は傾きを変えることができ、鉛直線と円盤の軸との間の角度（傾き角）を φ とする。円盤表面と円盤の軸の交点を原点 O として、水平方向に x 軸、傾いた斜面にそって下方に y 軸をとる。座標軸は円盤の回転とともに回転しないものとし、 y 軸と棒がなす角度を θ として円盤の軸を上から見て反時計回りを正の角度とする。重力の大きさを g とし、空気抵抗は無視できるものとする。角度はラジアンを用いて表す。

次の問1～問6に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

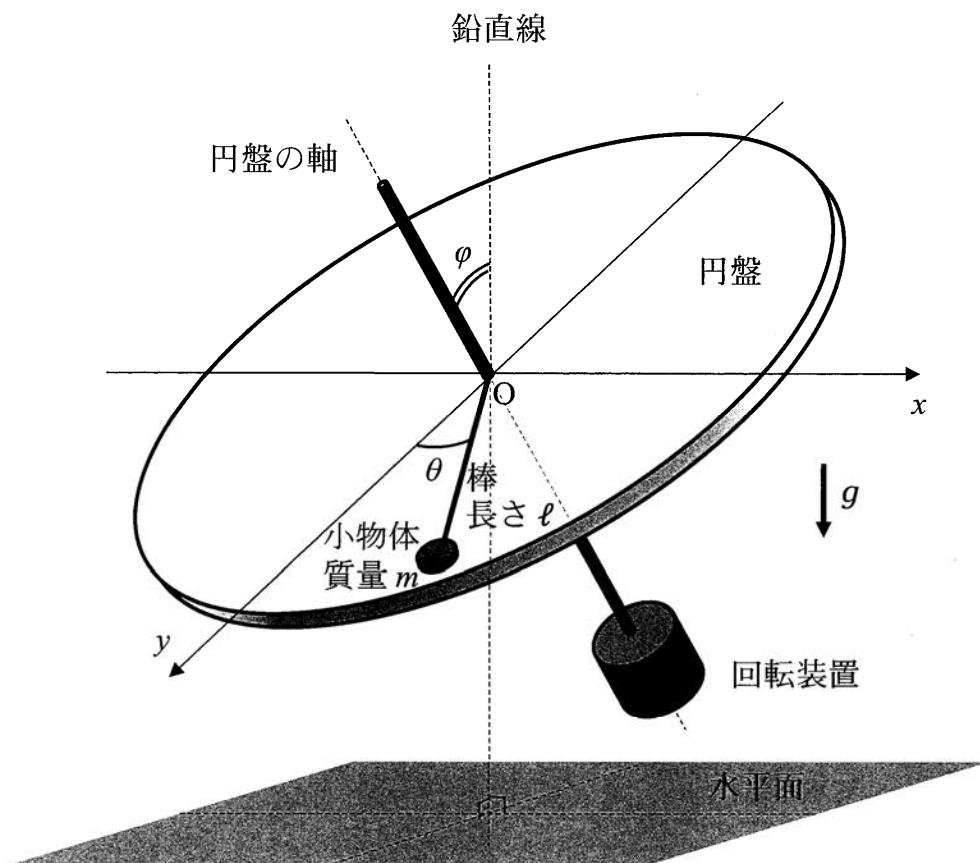


図1

※採点では、重力加速度の大きさを g として計算している解答も、論理的に間違が無ければ正解として扱った。

はじめに、円盤の傾き角を $\varphi = \frac{\pi}{2}$ とした。円盤は回転していない。

問1 図2のように、小物体を $\theta = \frac{2}{3}\pi$ の角度の位置から静かにはなすと、小物体は円盤の表面から離れることなく運動した。 $\theta = \frac{1}{3}\pi$ の角度の位置を通過するときに小物体が棒から受ける力の大きさ S を、 m ， g ， ℓ から必要なものを用いて表せ。また、その力の向きを答えよ。

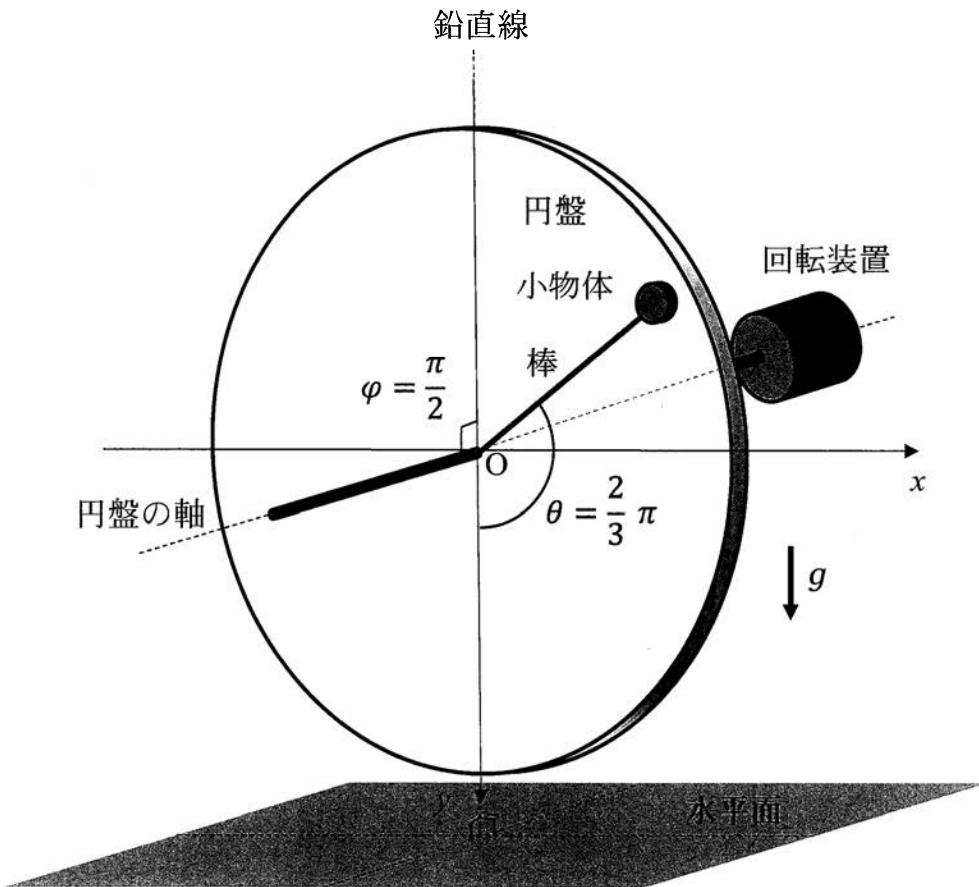


図2

問2 $|\theta|$ が十分小さい角度の位置から小物体を静かにはなしたとき、小物体は円盤の表面にそって $x = 0$ ， $y = \ell$ の点を中心 ℓ に比べて十分小さな振れ幅で振動した。このとき、小物体にはたらく力が復元力になることを示し、振動の角振動数 ω と周期 T を、 m ， g ， ℓ から必要なものを用いて表せ。

なお、必要であれば角度 α について、 $|\alpha|$ が十分小さいときに成り立つ近似式 $\sin \alpha \approx \tan \alpha \approx \alpha$ ， $\cos \alpha \approx 1$ を用いよ。

次に、円盤を水平にして傾き角を $\varphi = 0$ とした。円盤は回転していない。

問3 小物体を、棒から力を受けないようにして x 軸上の $x = \ell$ の位置に静かに置いた。その後、円盤の傾き角 φ をゆっくり大きくしていくと、傾き角が φ_0 になったときに小物体はすべりだした。静止摩擦係数 μ を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

問4 小物体がすべりだした直後、円盤の傾き角を φ_0 に保った。その後、小物体が θ $\left(0 \leq \theta < \frac{\pi}{2}\right)$ の角度の位置をはじめて通過する瞬間の、小物体の速さ v を、 m ， g ， φ_0 ， θ ， ℓ ， μ' から必要なものを用いて表せ。

問5 小物体は、 x 座標が負になることなく、ちょうど y 軸上の $y = \ell$ で静止した。 μ' を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

図3のように、円盤をさらに傾けて傾き角を φ_1 ($\varphi_0 < \varphi_1 < \frac{\pi}{2}$) で固定し、円盤を θ の正の向きに回転装置を用いて回転させた。その後、小物体を円盤上のある角度 θ_0 ($0 < \theta_0 < \frac{\pi}{2}$) の角度の位置に静かに置くと、小物体は円盤上をすべりながらその位置で静止した。

問6 このときの $\sin \theta_0$ と、小物体が棒から受ける力の大きさ S' を、 m , g , ℓ , μ' , φ_1 から必要なものを用いて表せ。

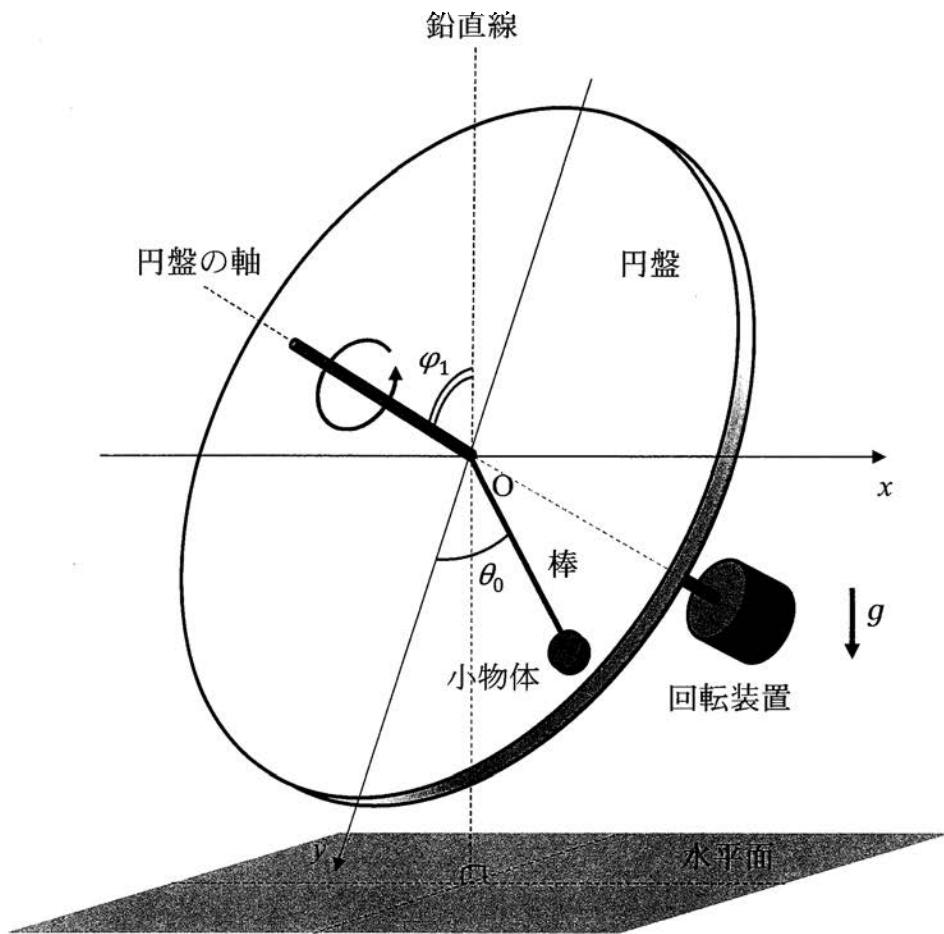


図3

2

熱を低温部分から高温部分に継続的に移動する機関をヒートポンプといい、エアコンなどに応用されている。単原子分子理想気体を使った簡略化したモデルでその原理を考える。

図1のように、物質量 n の単原子分子理想気体（以下、気体と呼ぶ）を、なめらかに動かすことのできるピストンでシリンダー内に封じた。ピストンおよびシリンダーの側面は断熱されておりシリンダーの底面のみが熱を通す。断熱板、絶対温度 T_H の高温の物体、絶対温度 T_L の低温の物体があり、シリンダーを移動することで底面をこれらと接触させることができる。はじめにシリンダーの底面は断熱板と接触しており、気体の絶対温度は T_H であった。これを状態 A とする。シリンダーの移動とピストンの上下により、気体の状態を、図2の圧力-体積図（ p - V 図）に示すように、状態 A→状態 B→状態 C→状態 D→状態 A と 1 サイクル変化させた。

温度は絶対温度で表し、気体定数を R 、気体の定積モル比熱を $\frac{3}{2}R$ とする。また、高温および低温の物体は十分大きな熱容量を持っており、温度は変わらないものとする。

次の問1～問5に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

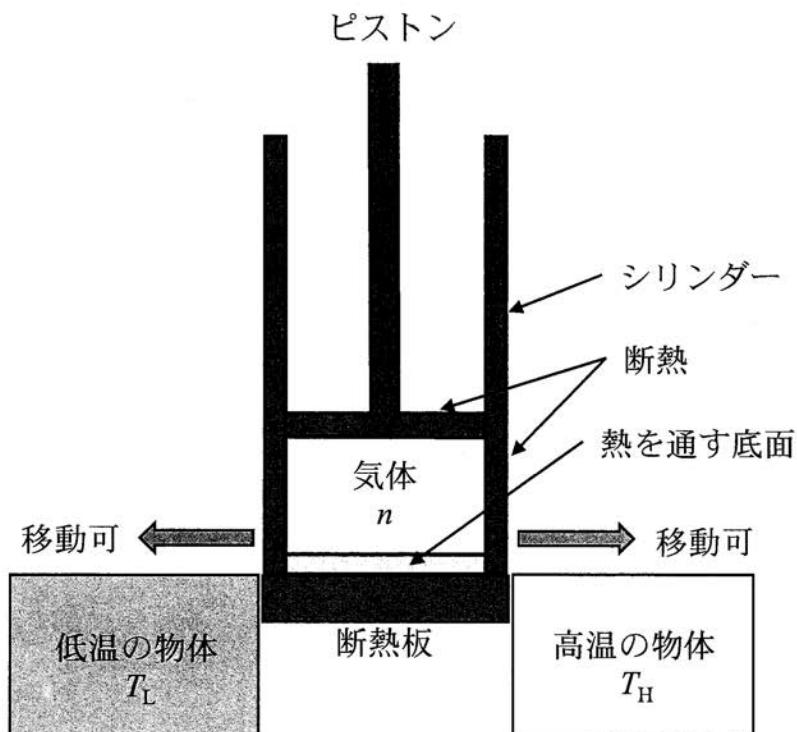


図1

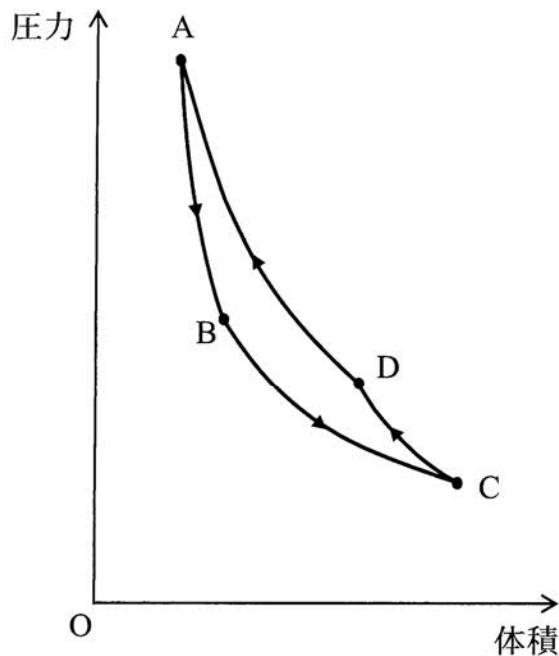


図 2

問 1 状態 A から、シリンダーの底面を断熱板に接触させたまま断熱変化でピストンをゆっくりと引き上げ、気体の温度が T_L の状態 B にした。内部エネルギーの変化 ΔU_{AB} と気体がされた仕事 W_{AB} を、 R ， n ， T_L ， T_H を用いて表せ。

問 2 次に、シリンダーを移動して底面を低温の物体に接触させ、等温変化でピストンをゆっくりと引き上げ、気体がされた仕事が W_{BC} になった状態 C でピストンを止めた。低温の物体から気体が受け取った熱量 Q_{BC} を、 W_{BC} を用いて表せ。

問 3 さらに、シリンダーの底面を断熱板上に再び移動し、断熱変化でピストンをゆっくりと押し込み、気体の温度が T_H の状態 D にした。このとき気体がされた仕事 W_{CD} を、問 1 の W_{AB} を用いて表せ。

問4 最後に、シリンダーの底面を高温の物体に接触させて、等温変化でピストンをゆっくりと押し込み、状態Aに戻した。このとき気体がされた仕事は W_{DA} であった。

この1サイクルで、高温の物体が気体から受け取った熱量 Q_h と、気体がされた仕事の総和 W ($W = W_{AB} + W_{BC} + W_{CD} + W_{DA}$) との比 $\frac{Q_h}{W}$ は、ヒートポンプを暖房機として使ったときの性能を表す係数となる。 $\frac{Q_h}{W}$ を、 W_{BC} 、 W_{DA} を用いて表せ。また、 $W > 0$ であることを用いて、(① 1より大きい、② 1に等しい、③ 1より小さい) のいずれかを、①～③で答えよ。

問5 Q_h と W は、圧力-体積図 ($p-V$ 図) の面積に対応する。 Q_h と W それについて、対応する面積を図3のA, B, C, D, p, q, r, s から必要なものを用いて、たとえば「ABqp で囲まれた面積」などのように表せ。

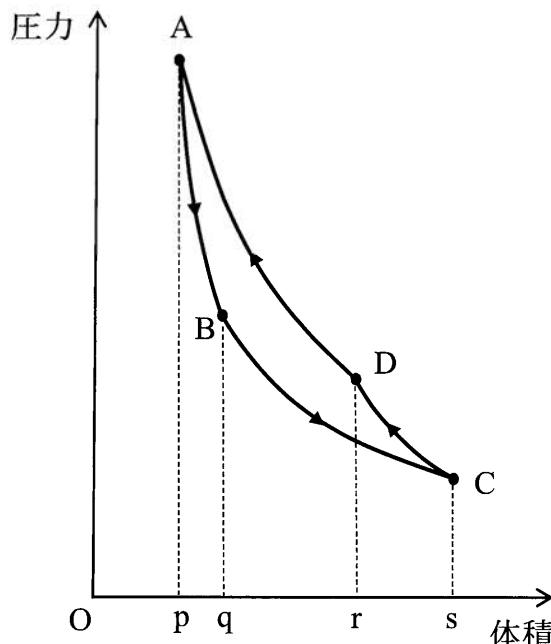


図3

3

図1のように、荷電粒子Aを電場（電界）で加速し磁場（磁界）で進行方向を曲げて、ターゲットとなる物体Tに衝突させる装置がある。装置は真空中にあり、荷電粒子Aは質量が m 、電気量が q ($q > 0$) で、物体Tは質量が M 、電気量が Q ($Q > 0$) である。

はじめ、荷電粒子Aは平行極板の正の極板の位置に静止しており、電位差が V である平行極板間の一様電場から静電気力を受けて運動し、極板の小さな穴から光速より十分小さい速さ v で射出される。その後、磁束密度 B の一様磁場の領域において半径 r で進行方向を 90° 曲げられ、磁場の領域の外に出て物体Tに向かって直進する。荷電粒子Aの運動は、紙面にそった平面のみに限定されている。

平行極板は、極板の大きさに比べて間隔 d が十分小さく、極板の穴も十分小さい。また、一様磁場の領域外での磁場はなく、漏れ出した磁場の影響も無視できる。さらに、電磁波および重力、平行極板と一様磁場の領域での物体Tの電荷の影響は無視できるものとする。クーロンの法則の比例定数を k_0 とし、静電気力による位置エネルギーの基準を無限遠とする。

次の問1～問6に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

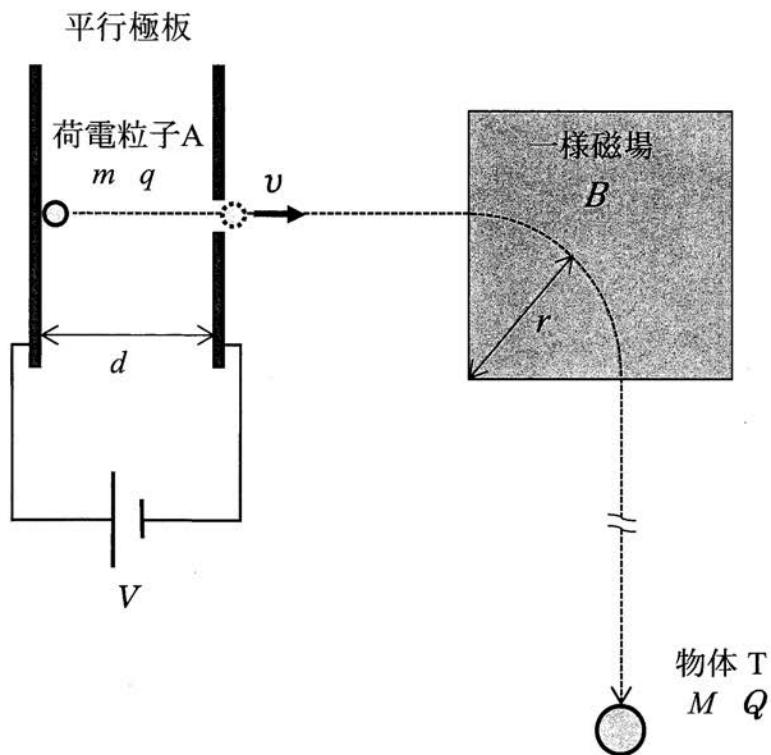


図1

問1 荷電粒子Aの, 平行極板間における加速度の大きさ a を, m , q , V , d を用いて表せ。

問2 極板の穴から射出された直後の荷電粒子Aの速さ v を, m , q , V を用いて表せ。

問3 一様磁場によって, 荷電粒子Aが進行方向を 90° 曲げられたときの磁束密度 B を, m , q , v , r を用いて表せ。また, 磁場の向きは, 紙面に対して, [① 奥から手前, ② 手前から奥], のいずれかを, ①, ②で答えよ。

問4 一様磁場によって, 荷電粒子Aが進行方向を 90° 曲げられた前後について, 荷電粒子Aの運動エネルギーと運動量について考える。

(a) 運動エネルギーは変化しないが, その理由を簡潔に説明せよ。

(b) 運動量の変化の大きさを, m , v を用いて表し, 運動量の変化の向きを, はじめの進行方向からの角度で答えよ。

図2のように、物体Tの中心に向かって荷電粒子Aが入射するように物体Tを置く。物体Tは半径Rの球形で電荷は中心に集中しており、荷電粒子Aの大きさは無視できる。

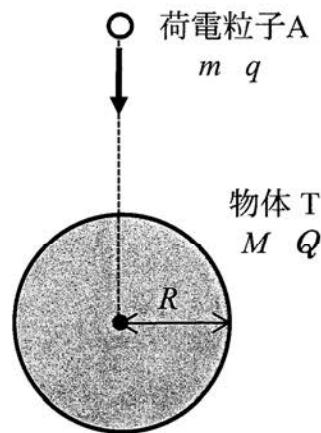


図2

問5 はじめに、物体Tを動かないように固定した状態で荷電粒子Aを衝突させた。荷電粒子Aが物体Tに衝突するための速さ v の最小値 u を、 m 、 q 、 R 、 M 、 Q 、 k_0 から必要なものを用いて表せ。

問6 次に、物体Tを固定せず自由に動くことができる状態で静止させて荷電粒子Aを衝突させた。荷電粒子Aが物体Tに衝突するための速さ v の最小値を u' とするとき、問5の u との比 $\frac{u'}{u}$ を、 m 、 M を用いて表せ。

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験③問題

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
工 学 部	15:20～16:20 (60 分)	7 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 7 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1 枚につき 1 か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がない場合は、日本語で答えてください。
- 日本語での字数の指定がある場合は句読点、数字、アルファベット、記号も 1 字として数えてください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

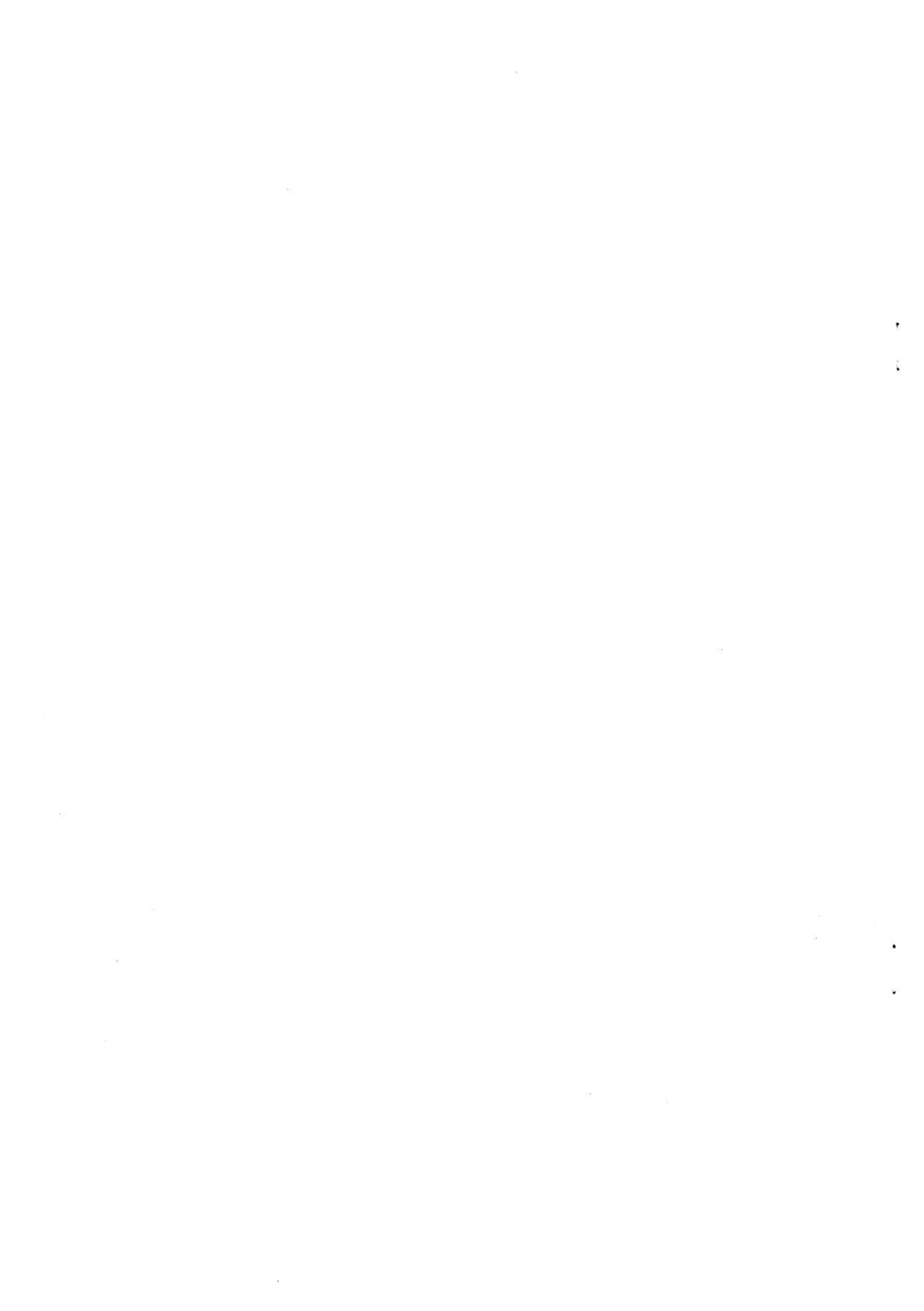
——このページは白紙——

-----このページは白紙-----

難民に関する次の英文<1><2>を読んで以下の設問に答えなさい。

<1>

※著作権による許諾不可のため、この部分はご覧頂けません。


※著作権による許諾不可のため、この部分はご覧頂けません。

<2>

※著作権による許諾不可のため、この部分はご覧頂けません。

※著作権による許諾不可のため、この部分はご覧頂けません。

※著作権による許諾不可のため、この部分はご覧頂けません。

令和6年度（2024年度） 東北大学工学部
AO入試（総合型選抜）Ⅲ期

筆記試験

問題冊子

（11：00～12：00, 60分）

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は3ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合は申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき1か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がない場合は、日本語で答えてください。
- 日本語での字数の指定がある場合は句読点、数字、アルファベット、記号も1字として数えてください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

――このページは白紙――

次の英文を読んで以下の設間に答えなさい。

Replacing fossil fuels with biofuels has the potential to generate a number of benefits. In contrast to fossil fuels, which are exhaustible resources, biofuels are produced from renewable *feedstocks. Thus, their production and use could, in theory, be sustained indefinitely.

While the production of biofuels results in *GHG emissions at several stages of the process, *EPA's (2010) analysis of the Renewable Fuel Standard (RFS) projected that several types of biofuels could yield lower lifecycle GHG emissions than gasoline over a 30 year time horizon. Academic studies using other economic models have also found that biofuels can lead to reductions in lifecycle GHG emissions relative to conventional fuels. *Second and third generation biofuels have significant potential to reduce GHG emissions relative to conventional fuels because feedstocks can be produced using marginal land. Moreover, in the case of waste biomass, no additional agricultural production is required, and indirect *market-mediated GHG emissions can be minimal if the wastes have no other productive uses.

Biofuels can be produced domestically, which could lead to lower fossil fuel imports. If biofuel production and use reduces our consumption of imported fossil fuels, we may become less vulnerable to the adverse impacts of supply disruptions. A) Reducing our (ア)(イ)(ウ)(エ) (エ), generating economic benefits for American consumers, but also potentially increasing petroleum consumption abroad.

Biofuels may reduce some pollutant emissions. Ethanol, in particular, can ensure complete *combustion, reducing carbon monoxide emissions.

B) It is important to note that biofuel production and consumption, in and of itself, will not reduce GHG or conventional pollutant emissions, lessen petroleum imports, or *alleviate pressure on exhaustible resources. Biofuel production and use must coincide with reductions in the production and use of fossil fuels for these benefits to *accrue. These benefits would be *mitigated if biofuel emissions and resource demands augment, rather than displace, those of fossil fuels.

Biofuel feedstocks include many crops that would otherwise be used for human consumption directly, or indirectly as animal feed. Diverting these crops to biofuels may lead to more land area devoted to agriculture, increased use of polluting inputs, and higher food prices. Cellulosic feedstocks can also compete for resources (land, water, *fertilizer, etc.) that could otherwise be devoted to food production. As a result, some research suggests that biofuel production may give rise to several undesirable developments.

Changes in land use patterns may increase GHG emissions by releasing *terrestrial carbon stocks to the atmosphere. Biofuel feedstocks grown on land cleared from tropical forests, such as soybeans in the Amazon and oil palm in Southeast Asia, generate particularly high GHG emissions. Even use of cellulosic feedstocks can spur higher crop prices that encourage the expansion of agriculture into undeveloped land, leading to GHG emissions and biodiversity losses.

Biofuel production and processing practices can also release GHGs. Fertilizer application releases nitrous oxide, a potent greenhouse gas. Most *biorefineries operate using fossil fuels. Some research suggests that GHG emissions resulting from biofuel production and use, including c) those from indirect land use change, may be higher than those generated by fossil fuels, depending on the time horizon of the analysis.

Regarding non-GHG environmental impacts, research suggests that production of biofuel feedstocks, particularly food crops like corn and soy, could increase water pollution from nutrients, *pesticides, and *sediment. Increases in irrigation and ethanol refining could deplete *aquifers. d) Air quality could also decline in some regions if the impact of biofuels on tailpipe emissions plus the additional emissions generated at biorefineries increases net conventional air pollution.

Economic models show that biofuel use can result in higher crop prices, though the range of estimates in the literature is wide. For example, a 2013 study found projections for the effect of biofuels on corn prices in 2015 ranging from a 5 to a 53 percent increase. The National Research Council's (2011) report on the RFS included several studies finding a 20 to 40 percent increase in corn prices from biofuels during 2007 to 2009. A National Center for Environmental Economics (NCEE) working paper found a 2 to 3 percent increase in long-run corn prices for each billion gallon increase in corn ethanol production on average across 19 studies. Higher crop prices lead to higher food prices, though impacts on retail food in the US are expected to be small. Higher crop prices may lead to higher rates of *malnutrition in developing countries.

(Reprinted from United States Environmental Protection Agency, Related Topics: Environmental Economics, Economics of Biofuels (2023) 一部改変)

*注

feedstocks : 原料

GHG (greenhouse gas) : 温室効果ガス

EPA (Environmental Protection Agency) : アメリカ合衆国環境保護庁

Second and third generation biofuels : 第2世代（油脂、セルロース、廃棄物由来）および第3世代（藻類由来）のバイオ燃料

market-mediated : 市場を介した

combustion : 燃焼

alleviate : 緩和する

accrue : 発生する

mitigate : 軽減する

fertilizer : 肥料

terrestrial : 地上の

biorefinery : バイオ燃料精製所

pesticide : 殺虫剤

sediment：堆積物

aquifer：帶水層

malnutrition：栄養失調

問 1 筆者が本文中で主張しているバイオ燃料の利点のうち 4 項目を解答欄 (1) ~ (4) に、問題点のうち 4 項目を解答欄 (5) ~ (8) に、各々 25 字以内で答えよ。

問 2 下線部 A) の () 内に、文脈に合うように以下の①～⑦の語句を適切な順序に並べ替えて入れるとき、(ア)、(イ)、(ウ)、(エ) に入る語句の番号を答えなさい。ただし、同じ語句を 2 回以上用いてはならない。

① price ② could also ③ demand ④ petroleum ⑤ reduce ⑥ for ⑦ its

問 3 下線部 B) を和訳しなさい。

問 4 下線部 C) について、「those」が指す内容を以下の①～④から 1 つ選び、番号を答えよ。

① fossil fuels ② nitrous oxide ③ GHG emissions ④ biorefineries

問 5 下線部 D) を和訳しなさい。

問 6 筆者が本文中で主張しているバイオ燃料の利点または問題点の中で、あなたが最も重要と考えるものを理由とともにあげ、バイオ燃料の利用の是非についてあなたの考えを 300 字以内で述べなさい。

令和 6 年度 AO 入試問題集 (農学部)

公表期限：2027 年 3 月末

東北大学アドミッション機構

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験①問題

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
農 学 部	9:30~10:50 (80 分)	6 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 6 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」、「メモ用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」、「メモ用紙」は持ち帰ってください。

——このページは白紙——

A246

——このページは白紙——

A246

1

以下の問いに答えよ。

(1) 1, 2, 3, 4, 5, 6 の目が等しい確率で出る 1 個のさいころを 3 回続けて投げる。出た目が連續する 3 つの数となる確率を求めよ。ただし、出る目の順番は問わない。

(2) $x > 1$ とする。次の不等式を満たす x の値の範囲を求めよ。

$$\log_3 x + \log_x 9 \leq \frac{9}{2}$$

(3) 次の定積分の値を求めよ。

$$\int_{-1}^1 |x(x+1)^2| dx$$

2

三角形 ABC において, $AB = 7$, $BC = 5$, $CA = 3$ とする。辺 BC を $4:1$ に内分する点を D とする。頂点 B から直線 AC に垂線を引き, 直線 AC との交点を E とする。 $\overrightarrow{AB} = \vec{b}$, $\overrightarrow{AC} = \vec{c}$ とするとき, 次の問い合わせに答えよ。

- (1) 内積 $\vec{b} \cdot \vec{c}$ の値を求めよ。
- (2) 線分 AE の長さを求め, \overrightarrow{AE} を \vec{c} を用いて表せ。
- (3) 三角形 ABC の面積を求めよ。
- (4) 点 E に関して点 C と対称な点を F とする。直線 AD と直線 BF との交点を G とするとき, 三角形 BDG の面積を求めよ。

3 xy 平面上の曲線 $C_0 : x^2 - 2xy + y^2 - 3\sqrt{2}x + \sqrt{2}y = 0$ を原点の周りに $\frac{\pi}{4}$ だけ回転した曲線を C_1 とする。次の問い合わせに答えよ。

- (1) 点 $A(x, y)$ を原点の周りに $\frac{\pi}{4}$ だけ回転した点を $B(s, t)$ とする。 s, t をそれぞれ x, y を用いて表せ。
- (2) C_1 を表す x と y との関係式を求めよ。
- (3) C_0 の概形を xy 平面上に描け。
- (4) C_0 と x 軸とで囲まれた部分の面積を求めよ。

令和 6 年度（2024 年度）東北大学

AO入試（総合型選抜）Ⅱ期

筆記試験② 封筒

令和 5 年 11 月 4 日

志願学部	試験時間	問題冊子数
農学部	13:00~14:20 (80 分)	3 冊

注意事項

- 試験開始の合図があるまで、この封筒を開いてはいけません。
- この封筒には、「問題冊子」3冊、「解答用紙」3種類、「メモ用紙」1冊が入っています。
- 筆記試験②は、<必答問題1>、<選択問題1>、<選択問題2>の3冊からなります。
※ 必答問題1の他に、<選択問題1~2>のうちから1つを選択し、解答してください。選択問題を選択しなかった場合は、失格となります。
※ <選択問題>の解答用紙1枚目の所定の欄に、選択の有無を で囲んでください。

選択する場合：

選択する
選択しない

選択しない場合：

選択する
選択しない

- ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。問題冊子のホチキスは外さないでください。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」は1枚につき1か所の所定の欄に、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。選択しない問題の解答用紙にも受験記号番号を記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 試験終了後は、「解答用紙」は全て回収しますので持ち帰ってはいけません。
本封筒、「問題冊子」及び「メモ用紙」は持ち帰ってください。

令和 6 年度（2024 年度）東北大学
AO 入試（総合型選抜）Ⅱ期

筆記試験②

＜必答問題 1 ＞

令和 5 年 11 月 4 日

志願学部／学科／ 専攻	試験時間	ページ数
農 学 部	13:00～14:20 (80 分)	14 ページ

——このページは白紙——

——このページは白紙——

必要があれば次の数値を用いなさい。

気体定数: $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$

絶対零度: $-273 \text{ }^\circ\text{C}$

アボガドロ定数: $6.0 \times 10^{23} / \text{mol}$

ファラデー定数: $9.65 \times 10^4 \text{ C/mol}$

原子量: H = 1.0 Li = 6.9 C = 12.0 O = 16.0 Cl = 35.5 K = 39.1

1 気体の溶解に関する文〔I〕と蒸気圧に関する文〔II〕を読んで、問1から問5に答えなさい。

〔I〕体積を自由に変えることのできるピストン付きの容器に、水 1.0 L と気体A 0.30 mol のみを入れて、気体Aと水を合わせた容器内の体積が 3.0 L になるように固定具でピストンを固定した（図1）。実験のあいだ、容器の温度は常に 20 °C に保たれていた。気体Aの水への溶解はヘンリーの法則に従い、

20 °C で水に接している $1.0 \times 10^5 \text{ Pa}$ の気体Aは、水 1.0 L に $3.9 \times 10^{-2} \text{ mol}$ 溶けることとする。気体Aは今回の実験における温度、圧力のもとで凝縮することではなく、理想気体としてふるまい、また、ピストンの質量、水の蒸気圧は無視する。

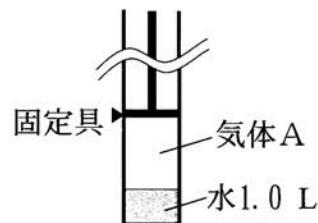


図 1

問1 容器内の気体Aの圧力を P [Pa] として(1)から(3)に答えなさい。

(1) 水 1.0 L に溶解している気体Aの物質量 n_s [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。

$$n_s = \boxed{} \times P$$

(2) 水の上の空間に存在する気体Aの物質量 n_g [mol] を、次の式で表すとき、

〔 〕に入る数値を有効数字 2 桁で答えなさい。ただし、容器内の気体部分の体積は 2.0 L とし、気体定数 $8.3 \times 10^3 \text{ Pa} \cdot \text{L}/(\text{mol} \cdot \text{K})$ と絶対温度 293 K の積を $2.43 \times 10^6 \text{ Pa} \cdot \text{L}/\text{mol}$ として計算しなさい。

$$n_g = \boxed{} \times P$$

(3) P [Pa] の値を求め、その値を有効数字 2 桁で書きなさい。

問 2 温度を 20°C に保ったまま、ピストンの固定をはずして自由に動く状態にしたところ、容器内の気体Aの圧力が容器にかかる大気圧 ($1.0 \times 10^5 \text{ Pa}$) と等しくなってピストンが止まった。この状態を状態1とする(図2左)。状態1で水に溶けている気体Aの物質量を $n_1 \text{ [mol]}$ とする。次に温度を 20°C に保ったまま、状態1のピストンにおもりを載せ、容器内の気体Aの圧力を $2.0 \times 10^5 \text{ Pa}$ とした状態を状態2とする(図2右)。状態2で水に溶けている気体Aの物質量を $n_2 \text{ [mol]}$ とする。(1)および(2)に答えなさい。ただし、固定をはずしたピストンは摩擦なく動くものとする。

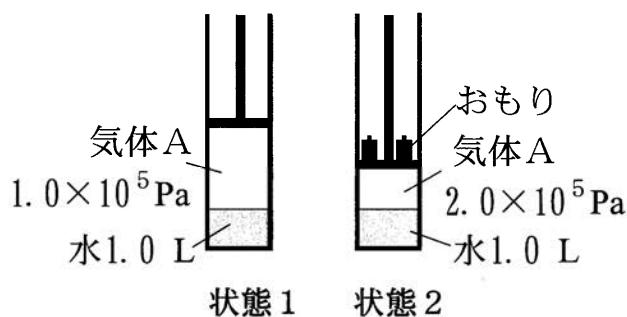


図2

(1) $n_1 \text{ [mol]}$ の気体Aの体積を $1.0 \times 10^5 \text{ Pa}$ のもとで、 $n_2 \text{ [mol]}$ の気体Aの体積を $2.0 \times 10^5 \text{ Pa}$ のもとで測定したところ、それぞれ $V_1 \text{ [L]}$ 、 $V_2 \text{ [L]}$ であった。 V_1 と V_2 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積測定時の温度はいずれも 20°C とする。

① $2V_1 = V_2$ ② $V_1 = V_2$ ③ $V_1 = 2V_2$

(2) $n_1 \text{ [mol]}$ の気体Aと $n_2 \text{ [mol]}$ の気体Aの体積を同じ圧力のもとで測定したところ、それぞれ $V_3 \text{ [L]}$ 、 $V_4 \text{ [L]}$ であった。 V_3 と V_4 を比較したとき、その大きさはどのような関係になるか。①から③より正しいものを 1 つ選んで解答欄の番号を○で囲みなさい。体積測定時の温度はいずれも 20°C とする。

① $2V_3 = V_4$ ② $V_3 = V_4$ ③ $V_3 = 2V_4$

〔II〕 体積を自由に変えることのできるピストン付きの容器に、水 0.10 mol と水素 0.10 mol のみを入れて体積が 3.0 L になるようピストンを固定し、温度を 90 °C に保つて放置した。_(a) 十分に放置した段階で、容器

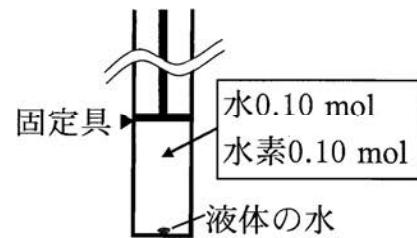


図 3

内には水の一部が液体として存在しており、このときの水素分圧は 1.0×10^5 Pa であった (図 3)。また、図 3 の容器にかかる大気圧は 1.0×10^5 Pa であり、90 °C での水の蒸気圧 (飽和蒸気圧) は 7.0×10^4 Pa であった。

次に、温度を 90 °C に保ったまま、ピストンの固定をはずして可動状態とし、ピストンを引いて体積をゆっくりと増加させ、_(b) 液体の水がすべて蒸発した瞬間にピストンを再び固定した。さらに、温度を 90 °C に保ったまま、ピストンの固定を再びはずして自由に動く状態とし、静止するまで放置することにより、_(c) 容器内部を大気圧と等しい圧力とした。

また、図 3 の装置とは別に、発火装置が付いた体積が 3.0 L の密閉容器 (体積一定) を準備し、この容器に_(d) 水素 0.10 mol と酸素 0.10 mol のみを入れ、水素を完全燃焼させたのち、容器内部の温度を 90 °C に保った。

ピストンの質量および発火装置の体積は無視してよく、固定を外すとピストンは摩擦なく動くこととする。また、水素と酸素の水への溶解および液体の水の体積は無視し、気体は理想気体であるとする。

問 3 下線部 (a) の段階について、次の (1) および (2) に答えなさい。

- (1) 容器内の全圧は何 Pa か。その値を有効数字 2 枠で書きなさい。
- (2) 気体として存在する水は何 mol か。その値を有効数字 2 枠で書きなさい。

問 4 下線部 (b) の段階および下線部 (c) の段階について、次の (1) および (2) に答えなさい。

- (1) 下線部 (b) の段階の容器内の全圧は何 Pa か。その値を有効数字 2 枠で書きなさい。
- (2) 下線部 (c) の段階の容器の体積は何 L か。その値を有効数字 2 枠で書きなさい。

問 5 下線部 (d) において、容器内部の圧力は何 Pa になるか。その値を有効数字 2 枠で書きなさい。

2 次の文章〔I〕, 〔II〕および〔III〕を読み, 問1から問8に答えなさい。

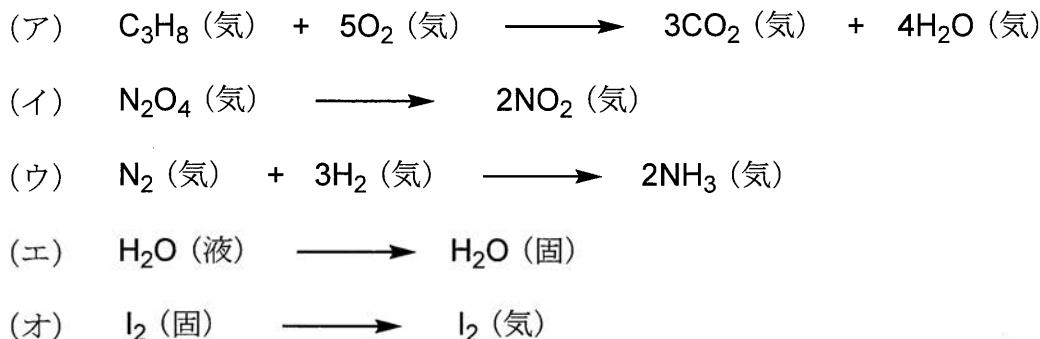
〔I〕 ある反応が進行するかどうかは, その反応の活性化工エネルギーが正反応も逆反応も十分に速く起こるほど低い場合には, 次の2つの要因によって決まる。なお, 以下の文章では融解や溶解などの状態の変化も広義の反応に含めて述べる。

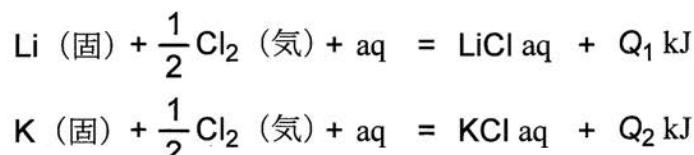
1つの要因は, 反応物から生成物に変化する際の内部エネルギーの変化である。内部エネルギーとは, いま観察者が注目している部分(これを系という)がもつ全エネルギー, すなわち運動エネルギーや結合エネルギーの総和のことである。一般に内部エネルギーが小さいほどその系は安定である。この変化の過程で系の内部エネルギーが減少する場合には, 系はその分のエネルギーを熱として系の外部に放出するので発熱反応となり, また生成物は反応物よりも安定になるので, 反応は自発的に進行しやすい。逆に, 系の内部エネルギーが増加する場合には, その分のエネルギーを系の外部から取り込むので吸熱反応となり, 生成物は反応物よりも不安定になるので反応は進行しにくい。

もう1つの要因は, 反応物から生成物に変化する際の系の乱雑さの変化である。反応によって系の乱雑さが増加する場合には, その反応は自発的に進行しやすいことが知られている。逆に, 反応によって系の乱雑さが減少する場合には, その反応は進行しにくい。ここで, 系の乱雫さが増加する変化とは, (a)固体から液体へ(融解), 液体から気体へ(気化)などの状態変化, (b)分離されていた2つの物質が均一に混じり合う変化(気体の混合, 固体の溶媒への溶解など), (c)化学反応において反応物より生成物の方が分子の数が増える変化などである。

ある反応において, 上記2つの要因の効果が互いに強め合う場合には, 反応は不可逆となり, 自発的に進行するか, または全く進行しないかのどちらかとなる。一方, 2つの要因の効果が互いに弱め合う場合には, 反応は可逆となり, 自発的に進行するかどうかは, その反応条件で2つの要因のどちらが大きいかによって決まる。たとえば, 反応の進行に対して, 反応による内部エネルギーの増加が与える効果が, 乱雫さの増加が与える効果より大きければ, その反応は自発的には進行しないが, 小さければ自発的に進行する。

問1 次の反応(ア)から(オ)は、それぞれ下の表の反応の分類AからDのどれにあてはまるか。解答欄にAからDの記号を記入しなさい。なお、これらの反応の最初と最後で系の温度は同じであるとする。




表 热の出入りと乱雑さの変化による反応の分類

反応の分類	热の出入り	乱雑さの変化
A	発熱	増加
B	吸熱	減少
C	発熱	減少
D	吸熱	増加

問2 LiCl (固) および KCl (固) の 25°C での水への溶解熱はそれぞれ 37.1 kJ/mol

および -17.2 kJ/mol である。次の(1)および(2)に答えなさい。

(1) LiCl (固) および KCl (固) の 25°C での生成熱はそれぞれ 408.8 kJ/mol および 435.9 kJ/mol である。次の熱化学方程式の Q_1 と Q_2 を比べ、大きい方の値を求めて小数第1位まで答えなさい。なお、aqは溶媒としての多量の水を、化学式の後に付けた aq は水溶液を表す。

(2) KCl (固) の水への溶解は吸熱反応であるが、自発的に進行する。その理由を「内部エネルギー」および「乱雑さ」という語句を用いて40~50字程度で説明しなさい。

〔II〕 塩化リチウムおよび塩化カリウムの結晶はいずれも塩化ナトリウム型構造（図1）をとっている。塩化リチウムおよび塩化カリウムの融点はそれぞれ $613\text{ }^{\circ}\text{C}$ および $776\text{ }^{\circ}\text{C}$ であるが、塩化リチウムと塩化カリウムを塩化リチウム : 塩化カリウム = 6:4 の物質量比で含む均一な混合物は、 $450\text{ }^{\circ}\text{C}$ では融解し液体となっている。この融解している塩、すなわち溶融塩を溶融塩 E とする。

溶融塩 E 100.0 g を $450\text{ }^{\circ}\text{C}$ に保ち、適切な材質の電極 X および電極 Y を挿入して電極 X と電極 Y との間に 3.6 V の電圧をかけたところ、電極 X 上にはリチウム単体（融点 $181\text{ }^{\circ}\text{C}$ ） が液体として生成し、電極 Y 上には塩素が気体として発生した。液体のリチウムの密度は溶融塩 E の密度よりも小さいため、生成したリチウムは溶融塩 E に浮かんでくるので、これを塩素と接触させないようにして集めることによりリチウム単体が得られた。なお、この電気分解の間に塩化カリウムは変化せず、また溶融塩 E は液体の状態を保っていたとする。

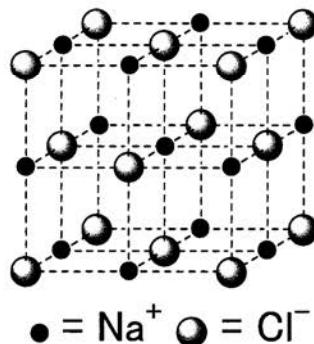


図1 塩化ナトリウム型構造

問3 塩化カリウム結晶の単位格子1個当たりの質量は何 g か。その数値を有効数字2桁で答えなさい。

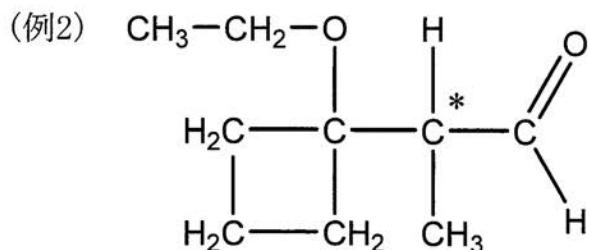
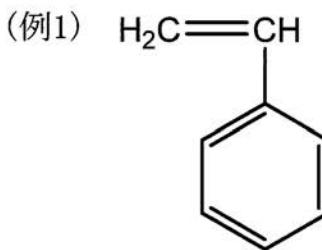
問4 下線部において、電極 X および電極 Y のうち一方は陽極、もう一方は陰極である。（ア）陽極上および（イ）陰極上で起こる反応を、それぞれ電子（ e^- ）を含むイオン反応式で書きなさい。

問5 電極 X と電極 Y との間に 5.0 A の一定電流が 2.0 時間流れたとすると、得られるリチウム単体の物質量は何 mol か。その数値を有効数字2桁で答えなさい。

〔III〕 (a) 酸化物には、水と反応させて水溶液としたときに、その水溶液が酸性を示すものから塩基性を示すものまで様々なものがある。また、水に溶けない酸化物でも、酸や塩基の水溶液と反応して溶けるものがある。たとえば、(b) 酸化アルミニウムは両性酸化物と呼ばれ、強酸とも強塩基とも反応して溶ける。また、二酸化ケイ素は常温ではほとんどの酸や塩基に対して安定であるが、(c) フッ化水素酸（フッ化水素の水溶液）とは反応して溶ける。

問6 下線部(a)に関連して、下の(ア)から(オ)に示す酸化物 0.1 mol を水 1 L に溶かし、得られた水溶液の pH を比べたとき、pH が最も低いもの、2番目に低いものおよび3番目に低いものを下の(ア)から(オ)の中からそれぞれ選び、それらの記号を pH が低い順に、左から右に列記しなさい。

(ア) BaO (イ) SO₃ (ウ) Na₂O (エ) P₄O₁₀ (オ) CO₂



問7 下線部(b)に関して、次の反応(1)および(2)のイオン式を含まない化学反応式をそれぞれ書きなさい。

- (1) 酸化アルミニウムと塩酸との反応
- (2) 酸化アルミニウムと水酸化ナトリウム水溶液との反応

問8 下線部(c)で起こる反応のイオン式を含まない化学反応式を書きなさい。

3

次の問1から問4に答えなさい。構造式や不斉炭素原子の表示(*)を求められた場合には、(例1) および(例2) にならって書きなさい。

問1 示性式 $\text{C}_4\text{H}_9\text{OH}$ で表されるアルコールの構造式を図1に示す。これらの中で、下の条件(1)から(4)の各々に当てはまるアルコールをAからDの中から選び、その記号を解答欄に書きなさい。なお、それぞれの条件において、解答は1つとは限らない。

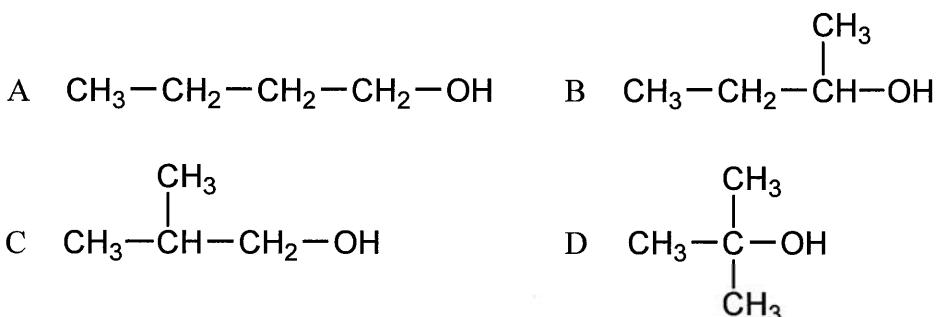


図1

- (1) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、ケトンを生成するアルコール
- (2) 硫酸酸性の二クロム酸カリウム水溶液を加え穩やかに加熱すると、カルボン酸を生成するアルコール
- (3) 酸を加えて加熱し、分子内脱水反応を起こさせて生じるアルケンが、エチル基を含まないアルケンのみであるアルコール
- (4) ヨウ素と水酸化ナトリウム水溶液を加えて反応させると、 CHI_3 が主要生成物の1つとして生じるアルコール

問2 ベンゼンの反応に関する次の文章を読み、下の(1)から(3)に答えなさい。

ベンゼンに濃硫酸と濃硝酸を加えて 60 °Cで反応させると、水より密度が高く水に溶けない無色から淡黄色の液体である **A** が生成する。また、^(a) ベンゼンと濃硫酸との反応では、水溶性のベンゼンスルホン酸が生成する。触媒として塩化鉄(Ⅲ)を用いて、ベンゼンを塩素と反応させると、クロロベンゼンが生成する。これら 3 つの反応は **ア** 反応に分類される。

一方、紫外線を照射しながらベンゼンと塩素とを反応させると、**B** が生成する。また、ベンゼンを白金やニッケルなどを触媒として圧力をかけた水素と反応させると、環状化合物 C_6H_{12} が生成する。これら 2 つの反応は **イ** 反応に分類される。

(1) 空欄 **A** および **B** に入る化合物を構造式で書きなさい。

(2) 空欄 **ア** および **イ** に入る最も適切な語句を、下の枠の中から選んで書きなさい。

脱離	付加	分解	重合	置換
----	----	----	----	----

(3) 下線部 (a) の反応の化学反応式を書きなさい。その際、芳香族化合物は構造式で書きなさい。

問3 クロロベンゼン、フェノール、安息香酸およびアニリンを含むジエチルエーテル溶液Cが分液ロートに入っている。この溶液Cから、それぞれ次の化合物(1)と(2)のみを分離したい。いずれの場合も、下の(ク)を最後の操作として行うこととし、それ以前に行うすべての操作を、下の〔操作〕の中の(ウ)から(キ)の中から選んで、その操作の順番に左から右に記号を列記しなさい。なお、(ク)より前に行う操作は、(1)では2つ、(2)では3つである。

(1) アニリン

(2) フェノール

〔操作〕

(ウ) 溶液Cに希塩酸を加えて振り混ぜ、分離した下層を流し出す。

(エ) 溶液Cに炭酸水素ナトリウム水溶液を加えて振り混ぜ、分離した下層を流し出す。

(オ) 下層を流し出して残った上層に、水酸化ナトリウム水溶液を加えて振り混ぜ、分離した下層を流し出す。

(カ) 流し出した下層を別の分液ロートに入れる。それに希塩酸を加えて酸性にした後、ジエチルエーテルを加えて振り混ぜ、分離した下層を流し出す。

(キ) 流し出した下層を別の分液ロートに入れる。それに水酸化ナトリウム水溶液を加えて塩基性にした後、ジエチルエーテルを加えて振り混ぜ、分離した下層を流し出す。

〔最後の操作〕

(ク) 下層を流し出して残った上層をフラスコに移し、溶媒を蒸発させて除く。

問4 次の指定された条件 (1) から (4) を満たす有機化合物のうち、不斉炭素原子を 1 個もつものの構造式をそれぞれ 1 つずつ書きなさい。不斉炭素原子には*印を付けなさい。

- (1) 分子式 C_7H_{16} をもち 3 個の炭素と結合している炭素を 2 個含むアルカン
- (2) 分子式 $C_5H_{12}O$ をもつエーテル
- (3) 分子式 C_5H_8O をもち四員環構造（4 個の原子からなる環状構造）をもつケトン
- (4) 分子式 $C_3H_6O_3$ をもつヒドロキシ酸

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 1 ＞

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
農学部	13:00~14:20 (80 分)	13 ページ

B2456

——このページは白紙——

——このページは白紙——

1

図1のように、表面のあらい円盤があり、円盤は軸を中心に回転装置で回転することができるようになっている。長さ ℓ の軽くて伸び縮みしない棒の一端に質量 m の小物体を取り付け、他端を円盤の軸になめらかに自由に動くことができるよう取り付けた。小物体と円盤との間の静止摩擦係数は μ 、動摩擦係数は μ' であり、棒と円盤との間に摩擦力ははたらかない。円盤は傾きを変えることができ、鉛直線と円盤の軸との間の角度（傾き角）を φ とする。円盤表面と円盤の軸の交点を原点 O として、水平方向に x 軸、傾いた斜面にそって下方に y 軸をとる。座標軸は円盤の回転とともに回転しないものとし、 y 軸と棒がなす角度を θ として円盤の軸を上から見て反時計回りを正の角度とする。重力の大きさを g とし、空気抵抗は無視できるものとする。角度はラジアンを用いて表す。

次の問1～問6に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

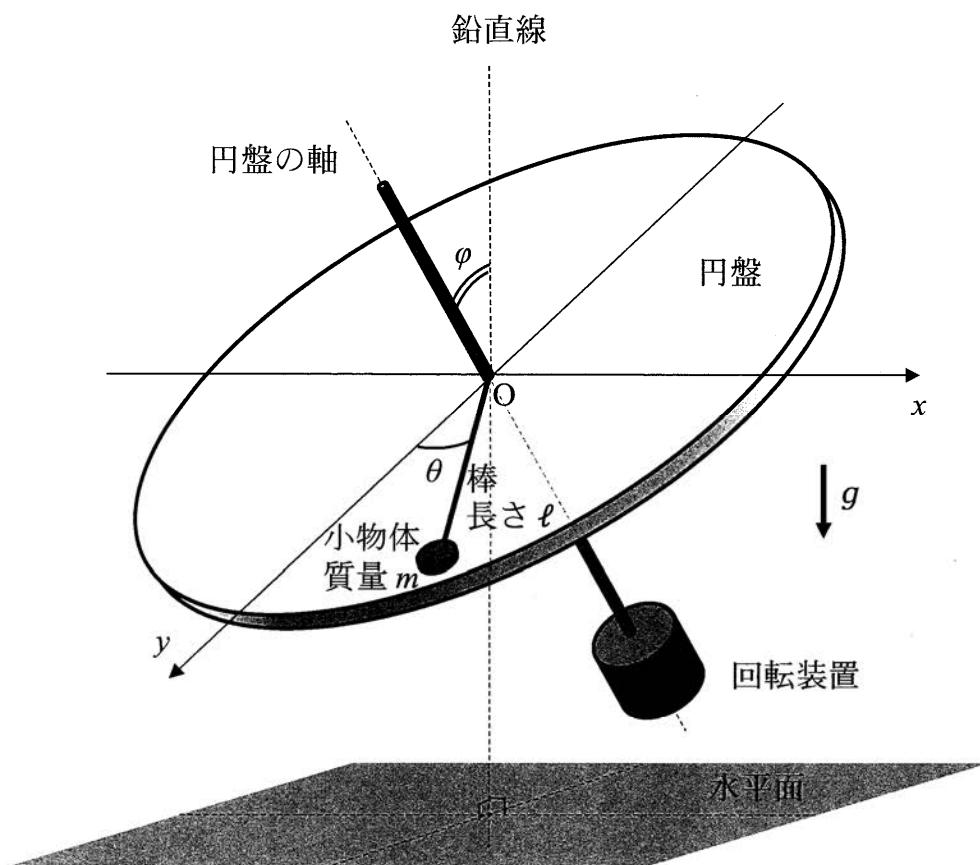


図1

※採点では、重力加速度の大きさを g として計算している解答も、論理的に間違いが無ければ正解として扱った。

はじめに、円盤の傾き角を $\varphi = \frac{\pi}{2}$ とした。円盤は回転していない。

問1 図2のように、小物体を $\theta = \frac{2}{3}\pi$ の角度の位置から静かにはなすと、小物体は円盤の表面から離れることなく運動した。 $\theta = \frac{1}{3}\pi$ の角度の位置を通過するときに小物体が棒から受ける力の大きさ S を、 m 、 g 、 ℓ から必要なものを用いて表せ。また、その力の向きを答えよ。

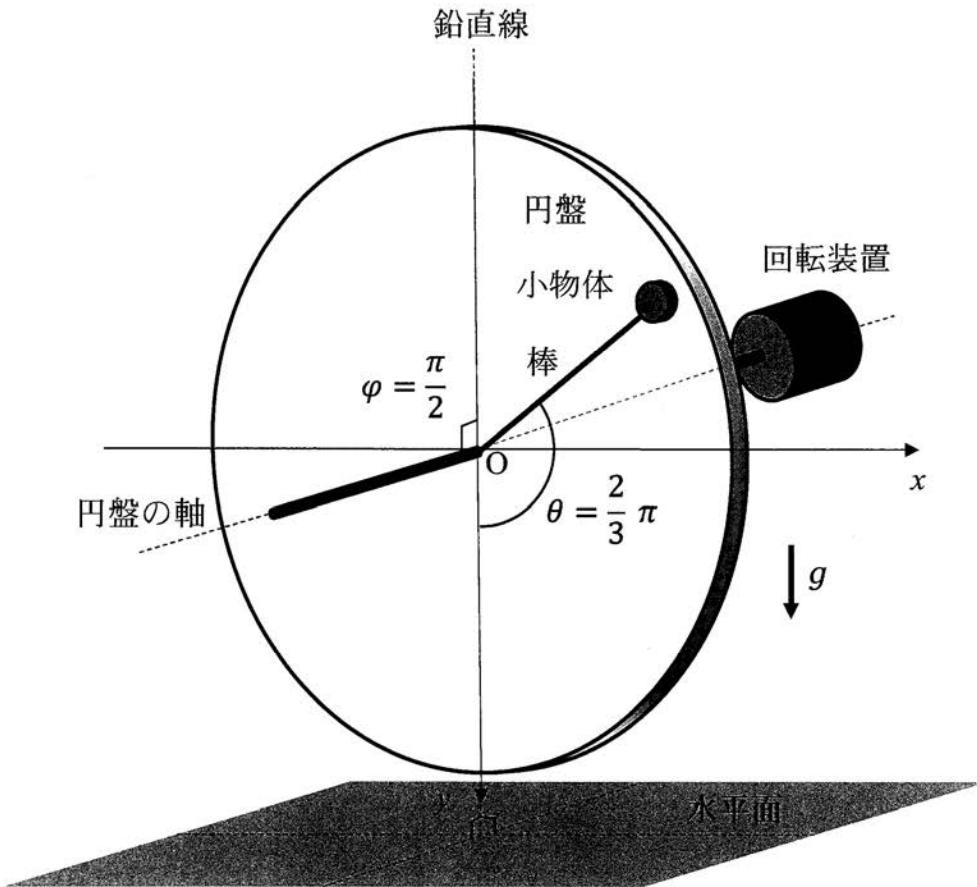


図2

問2 $|\theta|$ が十分小さい角度の位置から小物体を静かにはなしたとき、小物体は円盤の表面にそって $x = 0$ 、 $y = \ell$ の点を中心に、 ℓ に比べて十分小さな振れ幅で振動した。このとき、小物体にはたらく力が復元力になることを示し、振動の角振動数 ω と周期 T を、 m 、 g 、 ℓ から必要なものを用いて表せ。

なお、必要であれば角度 α について、 $|\alpha|$ が十分小さいときに成り立つ近似式 $\sin \alpha \approx \tan \alpha \approx \alpha$ 、 $\cos \alpha \approx 1$ を用いよ。

次に、円盤を水平にして傾き角を $\varphi = 0$ とした。円盤は回転していない。

問3 小物体を、棒から力を受けないようにして x 軸上の $x = \ell$ の位置に静かに置いた。その後、円盤の傾き角 φ をゆっくり大きくしていくと、傾き角が φ_0 になったときに小物体はすべりだした。静止摩擦係数 μ を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

問4 小物体がすべりだした直後、円盤の傾き角を φ_0 に保った。その後、小物体が θ $\left(0 \leq \theta < \frac{\pi}{2}\right)$ の角度の位置をはじめて通過する瞬間の、小物体の速さ v を、 m ， g ， φ_0 ， θ ， ℓ ， μ' から必要なものを用いて表せ。

問5 小物体は、 x 座標が負になることなく、ちょうど y 軸上の $y = \ell$ で静止した。 μ' を、 m ， g ， φ_0 ， ℓ から必要なものを用いて表せ。

図3のように、円盤をさらに傾けて傾き角を φ_1 ($\varphi_0 < \varphi_1 < \frac{\pi}{2}$) で固定し、円盤を θ の正の向きに回転装置を用いて回転させた。その後、小物体を円盤上のある角度 θ_0 ($0 < \theta_0 < \frac{\pi}{2}$) の角度の位置に静かに置くと、小物体は円盤上をすべりながらその位置で静止した。

問6 このときの $\sin \theta_0$ と、小物体が棒から受ける力の大きさ S' を、 m 、 g 、 ℓ 、 μ' 、 φ_1 から必要なものを用いて表せ。

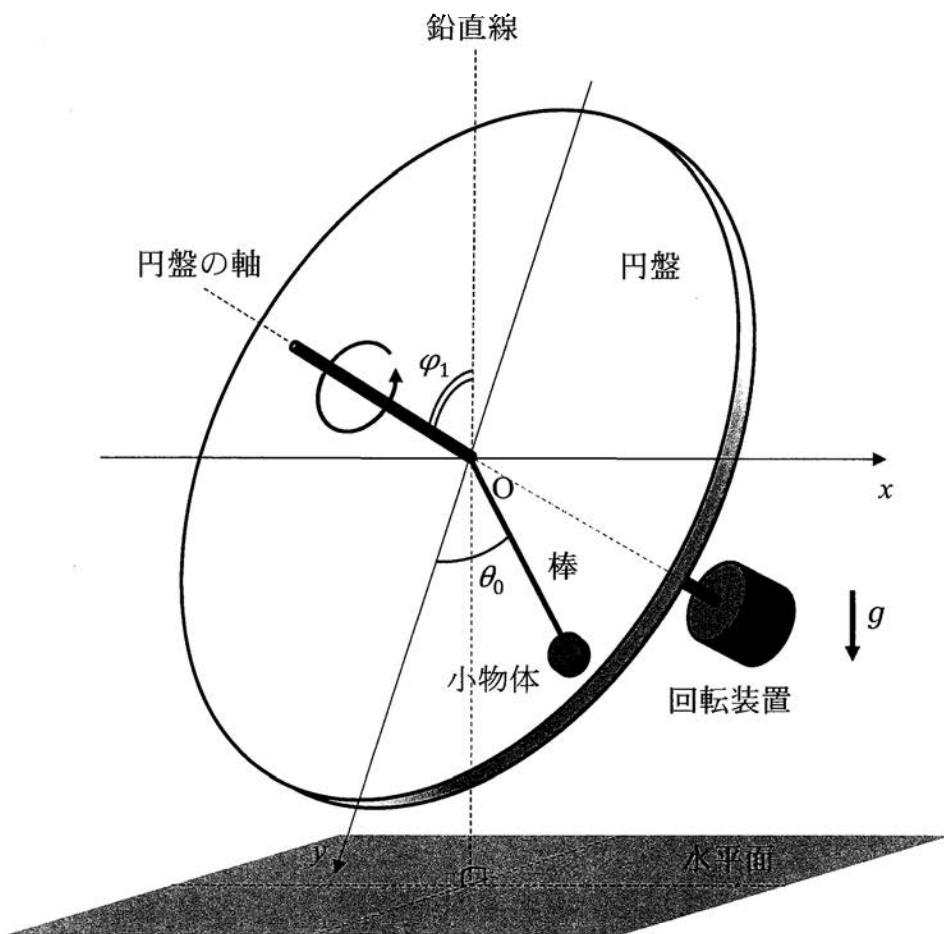


図 3

2

熱を低温部分から高温部分に継続的に移動する機関をヒートポンプといい、エアコンなどに応用されている。単原子分子理想気体を使った簡略化したモデルでその原理を考える。

図1のように、物質量 n の単原子分子理想気体（以下、気体と呼ぶ）を、なめらかに動かすことのできるピストンでシリンダー内に封じた。ピストンおよびシリンダーの側面は断熱されておりシリンダーの底面のみが熱を通す。断熱板、絶対温度 T_H の高温の物体、絶対温度 T_L の低温の物体があり、シリンダーを移動することで底面をこれらと接触させることができる。はじめにシリンダーの底面は断熱板と接触しており、気体の絶対温度は T_H であった。これを状態 A とする。シリンダーの移動とピストンの上下により、気体の状態を、図2の圧力-体積図（ p - V 図）に示すように、状態 A→状態 B→状態 C→状態 D→状態 A と 1 サイクル変化させた。

温度は絶対温度で表し、気体定数を R 、気体の定積モル比熱を $\frac{3}{2}R$ とする。また、高温および低温の物体は十分大きな熱容量を持っており、温度は変わらないものとする。

次の問1～問5に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

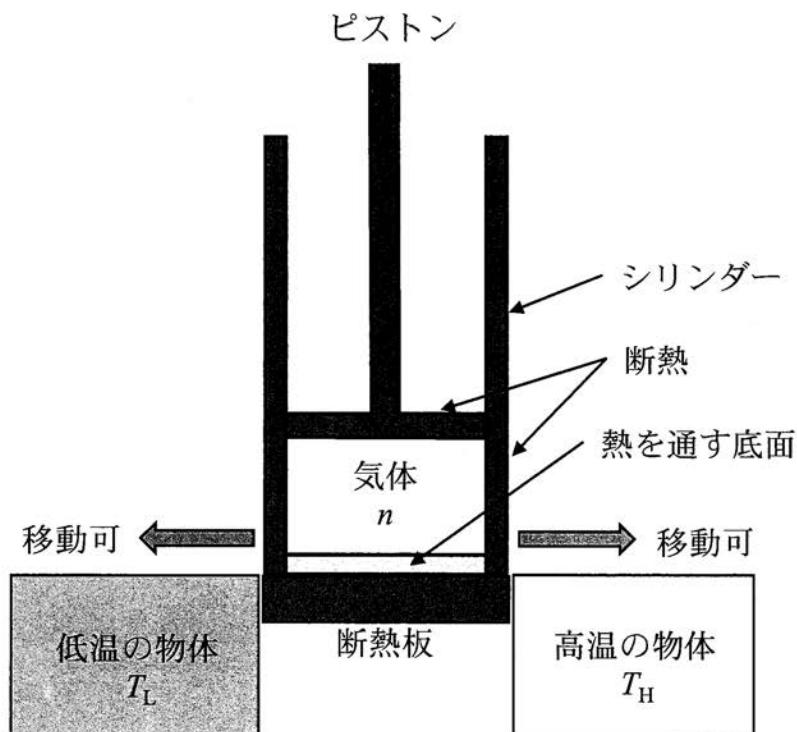


図1

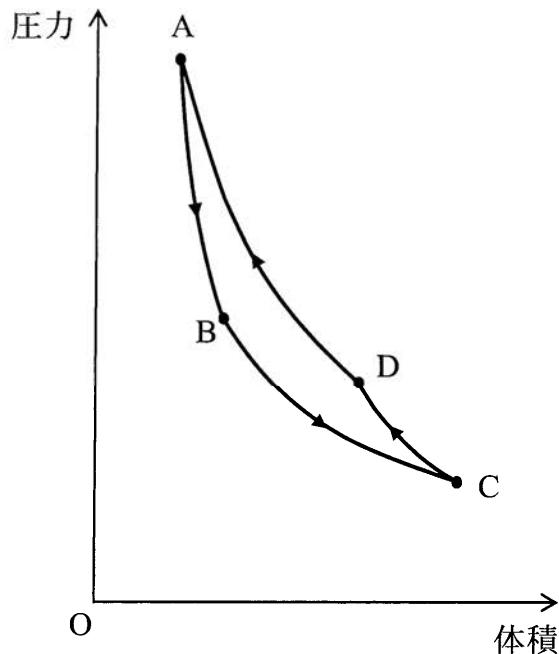


図 2

問 1 状態 A から、シリンダーの底面を断熱板に接触させたまま断熱変化でピストンをゆっくりと引き上げ、気体の温度が T_L の状態 B にした。内部エネルギーの変化 ΔU_{AB} と気体がされた仕事 W_{AB} を、 R ， n ， T_L ， T_H を用いて表せ。

問 2 次に、シリンダーを移動して底面を低温の物体に接触させ、等温変化でピストンをゆっくりと引き上げ、気体がされた仕事が W_{BC} になった状態 C でピストンを止めた。低温の物体から気体が受け取った熱量 Q_{BC} を、 W_{BC} を用いて表せ。

問 3 さらに、シリンダーの底面を断熱板上に再び移動し、断熱変化でピストンをゆっくりと押し込み、気体の温度が T_H の状態 D にした。このとき気体がされた仕事 W_{CD} を、問 1 の W_{AB} を用いて表せ。

問4 最後に、シリンダーの底面を高温の物体に接触させて、等温変化でピストンをゆっくりと押し込み、状態Aに戻した。このとき気体がされた仕事は W_{DA} であった。

この1サイクルで、高温の物体が気体から受け取った熱量 Q_h と、気体がされた仕事の総和 W ($W = W_{AB} + W_{BC} + W_{CD} + W_{DA}$) との比 $\frac{Q_h}{W}$ は、ヒートポンプを暖房機として使ったときの性能を表す係数となる。 $\frac{Q_h}{W}$ を、 W_{BC} 、 W_{DA} を用いて表せ。また、 $W > 0$ であることを用いて、 $\frac{Q_h}{W}$ は、(① 1より大きい、② 1に等しい、③ 1より小さい) のいずれかを、①～③で答えよ。

問5 Q_h と W は、圧力-体積図 ($p-V$ 図) の面積に対応する。 Q_h と W それについて、対応する面積を図3のA, B, C, D, p, q, r, s から必要なものを用いて、たとえば「ABqpで囲まれた面積」などのように表せ。

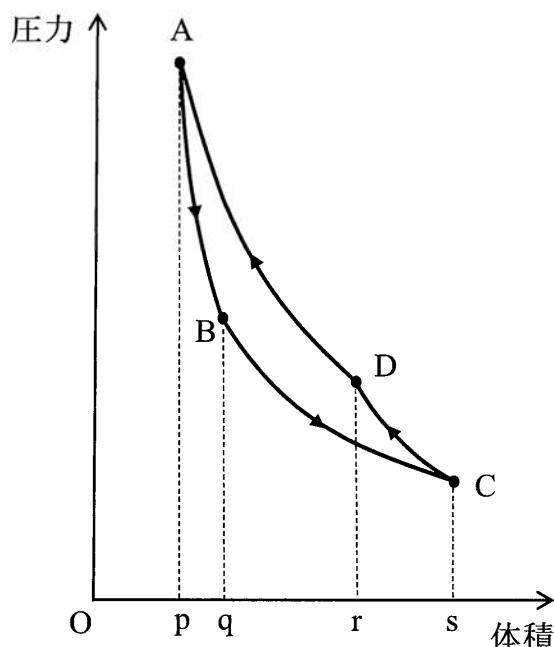


図3

3

図1のように、荷電粒子Aを電場（電界）で加速し磁場（磁界）で進行方向を曲げて、ターゲットとなる物体Tに衝突させる装置がある。装置は真空中にあり、荷電粒子Aは質量が m 、電気量が q ($q > 0$) で、物体Tは質量が M 、電気量が Q ($Q > 0$) である。

はじめ、荷電粒子Aは平行極板の正の極板の位置に静止しており、電位差が V である平行極板間の一様電場から静電気力を受けて運動し、極板の小さな穴から光速より十分小さい速さ v で射出される。その後、磁束密度 B の一様磁場の領域において半径 r で進行方向を 90° 曲げられ、磁場の領域の外に出て物体Tに向かって直進する。荷電粒子Aの運動は、紙面にそった平面のみに限定されている。

平行極板は、極板の大きさに比べて間隔 d が十分小さく、極板の穴も十分小さい。また、一様磁場の領域外での磁場はなく、漏れ出した磁場の影響も無視できる。さらに、電磁波および重力、平行極板と一様磁場の領域での物体Tの電荷の影響は無視できるものとする。クーロンの法則の比例定数を k_0 とし、静電気力による位置エネルギーの基準を無限遠とする。

次の問1～問6に答えよ。解答は、結果だけでなく、考え方や計算の過程も示せ。

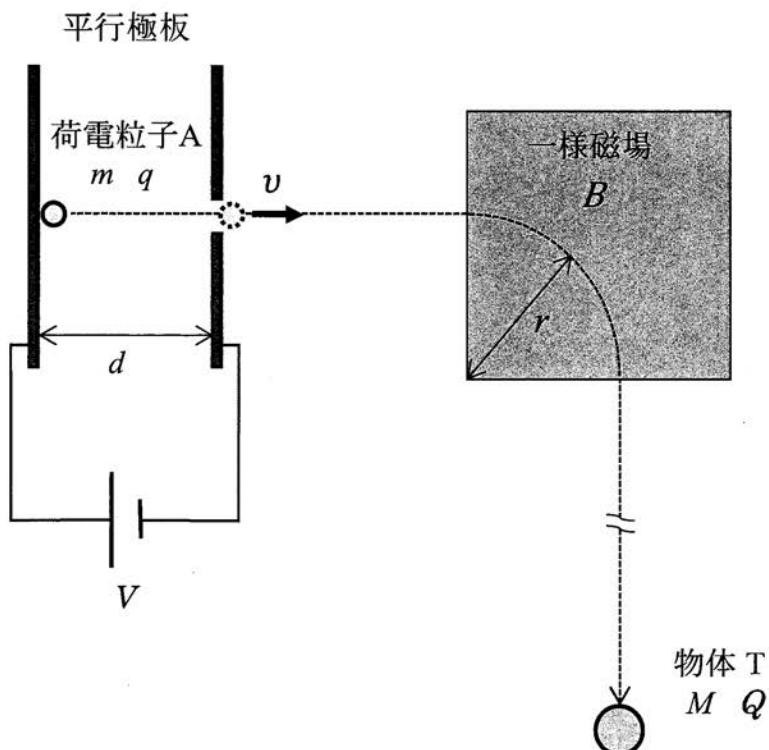


図1

問1 荷電粒子Aの, 平行極板間における加速度の大きさ a を, m , q , V , d を用いて表せ。

問2 極板の穴から射出された直後の荷電粒子Aの速さ v を, m , q , V を用いて表せ。

問3 一様磁場によって, 荷電粒子Aが進行方向を 90° 曲げられたときの磁束密度 B を, m , q , v , r を用いて表せ。また, 磁場の向きは, 紙面に対して, [① 奥から手前, ② 手前から奥], のいずれかを, ①, ②で答えよ。

問4 一様磁場によって, 荷電粒子Aが進行方向を 90° 曲げられた前後について, 荷電粒子Aの運動エネルギーと運動量について考える。

(a) 運動エネルギーは変化しないが, その理由を簡潔に説明せよ。

(b) 運動量の変化の大きさを, m , v を用いて表し, 運動量の変化の向きを, はじめの進行方向からの角度で答えよ。

図2のように、物体Tの中心に向かって荷電粒子Aが入射するように物体Tを置く。物体Tは半径Rの球形で電荷は中心に集中しており、荷電粒子Aの大きさは無視できる。

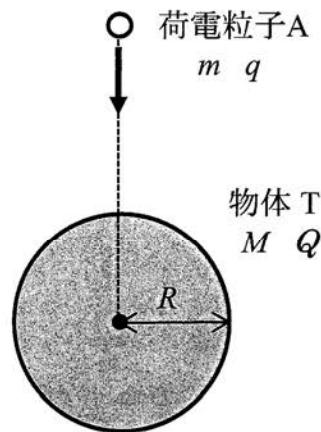


図2

問5 はじめに、物体Tを動かないように固定した状態で荷電粒子Aを衝突させた。荷電粒子Aが物体Tに衝突するための速さ v の最小値 u を、 m 、 q 、 R 、 M 、 Q 、 k_0 から必要なものを用いて表せ。

問6 次に、物体Tを固定せず自由に動くことができる状態で静止させて荷電粒子Aを衝突させた。荷電粒子Aが物体Tに衝突するための速さ v の最小値を u' とするとき、問5の u との比 $\frac{u'}{u}$ を、 m 、 M を用いて表せ。

令和 6 年度（2024 年度）東北大学

A○入試（総合型選抜）Ⅱ期

筆記試験②

＜選択問題 2 ＞

令和 5 年 11 月 4 日

志願学部	試験時間	ページ数
農 学 部	13:00~14:20 (80 分)	12 ページ

B12346

——このページは白紙——

——このページは白紙——

1 次の〔I〕, 〔II〕の文章を読み, 以下の問(1)~(6)に答えよ。

〔I〕 全ての染色体は複製起点と呼ばれる領域を持っており, タンパク質の複合体が複製起点内部にある特異的な DNA 配列を認識すると, 結合が起こる。その結果, 複製が DNA に沿って両方向に進行していく。複合体中の DNA ポリメラーゼは新しいヌクレオチドを既存の鎖に連結することでポリヌクレオチド鎖を伸長させる。しかし, この過程はプライマーと呼ばれる短いヌクレオチド鎖がなければ始まらない。ほとんどの生物でこのプライマーは短い 1 本鎖の ア である。

次に DNA ポリメラーゼがプライマーの 3' 末端にヌクレオチドを付加していき, DNA の当該領域の複製が完了するまで新しい鎖は伸長を続ける。その後プライマーは分解されてその部位に DNA が付加され, 形成された DNA 断片は別の酵素の働きで連結される。なお, DNA ポリメラーゼは 5' → 3' 方向にだけヌクレオチド鎖を伸長することができる。そこで, DNA の 2 本鎖のうち一方の鑄型鎖は, DNA がほどけていく方向に, 連続的に新生鎖が伸長していく。この鎖を イ 鎖と呼ぶ。

もう一方の鑄型鎖は逆向きにしか新生鎖を伸長できない。そこで, DNA がほどけて, ある程度 1 本鎖の部分が長くなると, プライマーが合成された後, DNA ポリメラーゼが, DNA のほどけていく方向とは逆方向に新生鎖を伸長して DNA の断片をつくる。できた断片は ウ という酵素によって, すでにつくられた断片とつながれる。このように, 断片がつくれながら不連続に複製されて新しくできた鎖を エ 鎖という。DNA 複製の過程でつくられる エ 鎖の断片は, 発見者にちなんで オ と呼ばれている。

〔II〕 実験室で DNA を調べたり遺伝子操作を実施したりするためには, DNA 配列のコピーを大量に合成することが必要になる。この DNA の増幅技術を PCR 法という。この方法の主な反応混合物は以下の①~⑤である。

- ① 鑄型として働く 2 本鎖 DNA
- ② 増幅対象となる DNA 配列の両末端に相補的な 2 つのプライマー
- ③ 4 種類のヌクレオチド
- ④ (a) DNA ポリメラーゼ
- ⑤ 適切な塩濃度とともに中性に近い pH を維持するための緩衝液

PCR 法の過程は以下の (i) ~ (iii) を繰り返す。

- (i) 反応混合物を約 95 ℃ に加熱する。
- (ii) 次に約 60 ℃ に温度を下げる。
- (iii) 次に約 72 ℃ にする。

これらを繰り返すことで、目的とする DNA 断片を増幅することができる。

問 (1) 上記の文章の [ア] ~ [オ] に適切な語句を記入せよ。

問 (2) DNA の複製方法には以下の 3 つの仮説が考えられていた。

仮説 1 もとの 2 本鎖 DNA はそのまま残り、新たな 2 本鎖 DNA ができる保存的複製

仮説 2 もとの 2 本鎖 DNA のそれぞれの鎖を鑄型として、新たなヌクレオチド鎖が合成される半保存的複製

仮説 3 もとの 2 本鎖 DNA は分解され、もとの DNA 鎖と新しい DNA 鎖が混在する 2 本鎖 DNA ができる分散的複製

メセルソンとスタールは 1958 年に下記のような実験を行った。

- ① 大腸菌に $^{15}\text{NH}_4\text{Cl}$ を栄養分として与えると、 ^{15}N からなる塩基を持つ重い DNA ができる。
- ② 大腸菌の窒素がほとんど ^{15}N におきかわったところで、 $^{14}\text{NH}_4\text{Cl}$ を含む培地に移して大腸菌をさらに増殖させた。
- ③ 1 回、2 回と分裂を繰り返した菌から DNA を抽出し、遠心分離によってその比重を調べた。

この実験からどのような結果が出て、どの仮説が正しいことが証明されたのか、5 行以内で説明せよ。

問 (3) [II] で述べた PCR 法を用いて、1500 塩基対の DNA 分子の中に存在する DNA 領域を、プライマーA とプライマーB を用いて増幅することにした。プライマーA の 5'末端は鑄型となる DNA の 250 塩基内側に、プライマーB の 5'末端は鑄型となる DNA の 150 塩基内側に結合する。この DNA 分子を PCR 法で n 回増幅させたら、1100 塩基対からなる目的とする 2 本鎖の DNA 領域は理論的には何本得られるか、 n で表せ。

問 (4) 通常の PCR 法で用いるプライマーは 20 塩基程度とされている。なぜ 20 塩基より少なすぎても、多すぎてもいけないのか、2 行以内で説明せよ。

問 (5) PCR 法で用いる下線部 (a) の DNA ポリメラーゼは一般的な酵素とはどのような点で異なっているか、1 行で説明せよ。

問 (6) DNA の塩基対では A (アデニン) と T (チミン) の対と G (グアニン) と C (シトシン) の対ではどちらの結合が、どういう理由で強いのか、2 行以内で説明せよ。

2 次の〔I〕～〔III〕の文章を読み、以下の問(1)～(5)に答えよ。

〔I〕 筋肉は円筒状で多核の筋細胞からできている。筋細胞の細胞質にはサルコメアという収縮単位が縦に連なった纖維がつまっている。サルコメアではミオシンフィラメントとアクチンフィラメントが交互に規則正しく配列している。サルコメアはATPを分解する際に発生するエネルギーでミオシンフィラメントとアクチンフィラメントの相対的な滑り運動で収縮する。筋肉の収縮・弛緩は筋細胞内のカルシウムイオンによって調節される。カルシウムイオンは筋小胞体に蓄えられており、収縮時には細胞質に放出され、トロポニンに結合する。(a)トロポニンはカルシウムイオンを結合すると、アクチンフィラメントとミオシンフィラメントとの相互作用を開始させる。弛緩時にはカルシウムイオンは再び筋小胞体に取り込まれ、ミオシンフィラメントとアクチンフィラメントの相互作用が断たれる。

〔II〕 骨格筋の収縮は運動神経によって制御されている。運動神経は、その末端で筋纖維と狭いすきまを隔てて連絡している。この部分をアという。このアで神経伝達物質として使われているアセチルコリンはナトリウムイオンなどを通過させるイオンチャネルを開かせて、筋細胞の興奮を引き起こす。脊椎動物の骨格筋を取り出し、それに接続する神経を1回刺激すると短い潜伏期の後、0.1秒ほどの収縮が起こる。このような単一の収縮を単収縮という。この刺激を1秒間に50回与えると、一続きの大きな収縮がみられるようになり、この収縮をイという。通常の骨格筋で起こる収縮はイである。

〔Ⅲ〕 筋収縮は大量の ATP を消費する。したがって、収縮を持続するためには ATP を補充しなければならない。その代表的な物質が骨格筋に多く蓄えられている高エネルギー化合物である ウ である。ウ は酵素の働きで エ になり、これに伴って ADP が ATP になる。

骨格筋細胞は血中のグルコースを取り込み オ として大量に蓄えている。運動時には交感神経とアドレナリンの作用により オ の分解が進み、グルコースを生じる。グルコースは解糖系によりピルビン酸に分解され、その過程で 1 分子のグルコースあたり 2 分子の ATP を作る。

以上の反応は酸素を必要としないため、酸素供給の乏しい場合に利用される。ATP 供給は速やかであるが、短時間で枯渇し、エ や カ が細胞内に蓄積する。カ は血中に拡散し、肝臓に運ばれて再びグルコースに合成される。

運動中は心拍の増加と骨格筋における血管の拡張により筋肉の血流量が増し、酸素の供給も増加する。このような条件ではピルビン酸は細胞小器官のミトコンドリアに入り、クエン酸回路や電子伝達系を経て ATP が合成される。

問 (1) 上記の文章の [ア] ~ [カ] に適切な語句を記入せよ。

問 (2) 下線部 (a) でトロポニンがカルシウムイオンと結合すると、どのような変化が起こり、アクチンフィラメントとミオシンフィラメントの相互作用が開始されるのか、4 行以内で説明せよ。

問 (3) カエル筋繊維のサルコメアの長さを変えて、張力を測ると図 1 のようになった。このことから予想されるサルコメアの長さ $2.2 \mu\text{m}$ の時の模式図を書け（ミオシンフィラメントとアクチンフィラメントの位置関係を明らかにすること）。

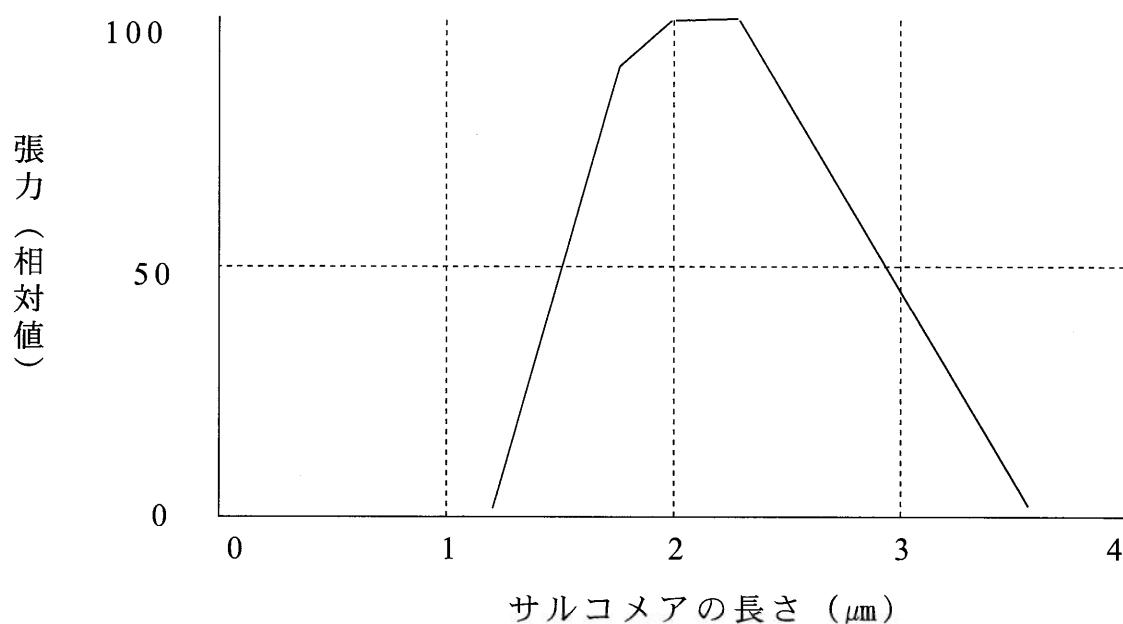


図 1

問 (4) カエルのふくらはぎの筋肉と神経が接する点から 20 mm 離れた A 点と 80 mm 離れた B 点を 1 回だけ刺激したところ、A 点では刺激から 6.3 ミリ秒 後に、B 点の刺激では刺激から 8.4 ミリ秒 後に筋肉の単収縮が記録された。この神経における興奮の伝導速度 ($\text{m}/\text{秒}$) を小数第 2 位を四捨五入して答えよ。

問 (5) 呼吸の電子伝達系において ATP がつくられるしくみを以下のキーワードをすべて使用して、5 行以内で説明せよ。

<キーワード>

ミトコンドリア、マトリックス、膜間、電子、ATP 合成酵素、水素イオン、タンパク質複合体、NADH、エネルギー

3 次の〔I〕～〔III〕の文章を読み、以下の問(1)～(6)に答えよ。

〔I〕 オオムギの種子などは主にデンプンを含む大きなアをもつ。このような種子においては、胚で生産されたジベレリンが、アを囲むように存在する糊粉層こふんそうに対して分泌され、アミラーゼなどの酵素の生産を誘導する。こうして生産されたアミラーゼはアに含まれるデンプンを分解し、発芽後の芽生えの成長エネルギー源として利用される。

オオムギの種子を半分に切ると、胚を含んだ側はアミラーゼの誘導が観察され、胚を含まない側はアミラーゼが誘導されない。したがって、胚がジベレリンの供給源であることがわかる。

(a) ジベレリンをある巨大分子に結合させた化合物は、細胞膜を通過できないが、これを糊粉層の細胞のプロトプラスト（細胞壁を取り除いた細胞）に作用させると、アミラーゼの生産を促すことができる。しかし、ジベレリンを糊粉層のプロトプラスト内に注入しても、アミラーゼの誘導は観察されない。

〔II〕 頂芽優勢はオーキシンとサイトカイニンによって制御されている。頂芽優勢に関しては以下の①～⑤の実験結果が得られている。

- ① 頂芽を切除すると、切り口に近い側芽が成長を開始する。
- ② 頂芽の切り口にオーキシンを与えると、頂芽優勢が維持され、側芽の成長は抑制される。
- ③ 頂芽切除後、側芽に直接オーキシンを与えた場合は、頂芽優勢は維持されず、側芽は成長を開始する。
- ④ 頂芽を切除しなくても、オーキシンの(b)極性移動を阻害する物質を茎に与えると、それより下位の側芽は成長を開始する。
- ⑤ 頂芽を切除しなくても、サイトカイニンを直接側芽に与えると、側芽は成長を開始する。

[Ⅲ] 多くの植物では花芽形成は日長による制御を受けている。

連続した暗期が **イ** より短いと花芽が形成される植物は長日植物と呼ばれ、 **イ** より長いと花芽が形成される植物は短日植物と呼ばれている。一方、日長時間に関係なく花芽が形成される植物を **ウ** と呼ぶ。

花芽の形成は日長時間を感知した葉で花成ホルモンがつくられ、これが茎頂分裂組織に移動することにより花芽が形成されると考えられている。

シロイヌナズナの変異体による研究で花成ホルモンに関係する遺伝子として *FT* 遺伝子が同定された。日長を感知した葉で *FT* タンパク質が合成され、 (c)この *FT* タンパク質が師管を通して 茎頂分裂組織に移動し、花芽が形成される。

問 (1) 上記の文章の **ア** ~ **ウ** に適切な語句を記入せよ。

問 (2) 種子が休眠することの 2 つの意義について、2 行以内で説明せよ。

問 (3) 下線部 (a) のような現象がなぜ起こるのか、1 行で説明せよ。ただし、ある巨大分子だけではアミラーゼの誘導に関与しないことがわかっている。

問 (4) [Ⅱ] の実験結果から、頂芽優勢はどのようなしくみで起こると考えられているか、3 行以内で説明せよ。

問 (5) 下線部 (b) のオーキシンの極性移動のしくみについて、3 行以内で説明せよ。

問 (6) 下線部 (c) の *FT* タンパク質はどのような働きをするのか、2 行以内で説明せよ。

令和 6 年度（2024 年度）東北大学

AO 入試（総合型選抜）Ⅱ期

筆記試験③問題

令和 5 年 11 月 4 日

志願学部／学科	試験時間	ページ数
医学部 保健学科 歯学部 農学部	15:20~16:50 (90 分)	13 ページ

注意事項

- 試験開始の合図があるまで、この「問題冊子」、「解答用紙」を開いてはいけません。
- この「問題冊子」は 13 ページあります。ページの脱落、印刷不鮮明の箇所などがあった場合には申し出てください。ホチキスは外さないでください。
- 「問題冊子」の他に、「解答用紙」を配付します。
- 解答は、必ず黒鉛筆（シャープペンシルも可）で記入し、ボールペン・万年筆などを使用してはいけません。
- 「解答用紙」の受験記号番号欄（1枚につき 1か所）には、忘れずに受験票と同じ受験記号番号をはっきりと判読できるように記入してください。
- 解答は、必ず「解答用紙」の指定された箇所に記入してください。
- 特に指示がない場合は、日本語で答えてください。
- 日本語での字数の指定がある場合は句読点、数字、アルファベット、記号も 1 字として数えてください。
- 試験終了後は「解答用紙」を回収しますので、持ち帰ってはいけません。
「問題冊子」は持ち帰ってください。

——このページは白紙——

C2346

2

510

——このページは白紙——

C2346

1 次の英文を読んで、以下の問い合わせに答えなさい。

Falling birth rates are a major concern for some of Asia's biggest economies. Governments in the region are spending hundreds of billions of dollars trying to reverse the trend. Will it work? Japan began introducing policies to encourage couples to have more children in the 1990s. South Korea started doing the same in the 2000s, while Singapore's first *fertility policy dates back to 1987. China, which has seen its population fall for the first time on 60 years, recently joined the growing club. While it is difficult to quantify exactly how much these policies have cost, South Korean President Yoon Suk-yeol recently said his country had spent more than \$200 billion (£160 billion) over the past 16 years on trying to boost the population. Yet last year South Korea broke its own record for the world's lowest fertility rate, with the average number of babies expected per woman falling to 0.78. (1) In neighbouring Japan, which had record low births of fewer than 800,000 last year, Prime Minister Fumio Kishida has *pledged to double the budget for child-related policies from 10 trillion yen, which is just over 2% of the country's gross domestic product. Globally, while there are more countries that are trying to lower birth rates, the number of countries wanting to increase fertility has more than tripled since 1976, according to the most recent report by the United Nations.

So why do these governments want to grow their populations? Simply put, having a bigger population who can work and produce more goods and services leads to higher economic growth. And while a larger population can mean higher costs for governments, it can also result in bigger tax *revenues. Also, many Asian countries are ageing rapidly. Japan leads the pack with nearly 30% of its population now over the age of 65 and some other nations in the region are not far behind. Compare that with India, which has just overtaken China as the world's most populous nation. More than a quarter of its people are between the age of 10 and 20, which gives its economy huge potential for growth. And when the share of the working age population gets smaller, the cost and burden of looking after the non-working population grow. "Negative population growth has an impact on the economy, and combined that with an ageing population, they won't be able to afford to support the elderly," said Xiujian Peng of Victoria University.

Most of the measures across the region to increase birth rates have been similar: payments for new parents, *subsidised or free education, extra nurseries, *tax incentives and expanded parental leave. But do these measures work? Data for the last few decades from Japan, South Korea and Singapore shows that attempts to boost their populations have had very little impact. Japan's finance ministry has published a study

which said the policies were a failure. It is a view echoed by the United Nations. “We know from history that the types of policies which we call demographic engineering where they try to incentivise women to have more babies, they just don't work,” Alanna Armitage of United Nations Population Fund told the BBC. “We need to understand the underlying determinants of why women are not having children, and that is often the inability of women to be able to combine their work life with their family life,” she added. But in Scandinavian countries, fertility policies have worked better than they did in Asia, according to Ms Peng. “The main reason is because they have a good welfare system and the cost of raising children is cheaper. Their gender equality is also much more balanced than in Asian countries.” Asian countries have ranked lower in comparison in the global gender gap report by the World Economic Forum.

There are also major questions over how these expensive measures should be funded, especially in Japan, which is the world's most *indebted developed economy. Options under consideration in Japan include selling more government bonds, which means increasing its debt, raising its sales tax or increasing *social insurance premiums. The first option adds financial burden to the future generations, while the other two would hit already struggling workers, which could convince them to have fewer children. But Antonio Fatás, professor of economics at *INSEAD says regardless of whether these policies work, they have to invest in them. “Fertility rates have not increased but what if there was less support? Maybe they would be even lower,” he said. (2) Governments are also investing in other areas to prepare their economies for shrinking populations. “China has been investing in technologies and innovations to make up for the declining labour force in order to mitigate the negative impact of the *shrinking population,” said Ms Peng. Also, while it remains unpopular in countries like Japan and South Korea, lawmakers are discussing changing their immigration rules to try to *entice younger workers from overseas. “Globally, the fertility rate is falling so it'll be a race to attract young people to come and work in your country,” Ms Peng added. Whether the money is well spent on fertility policies, these governments appear to have no other choice.

(出典：“Asia is spending big to battle low birth rates — will it work?” June 6, 2023, BBC より一部改変)
from BBC News at bbc.co.uk/news

*fertility : 出生率

*pledge : 約束する

*revenue : 歳入

*subsidise : 補助金を与える

*tax incentives : 税制優遇措置

*indebted : 負債がある

*social insurance premiums : 社会保険料

*INSEAD : 欧州経営大学院

*shrink : 減る

*entice : 呼び込む

問1 下線部(1)を日本語に訳しなさい。

問2 アジア諸国と比べ、スカンジナビア諸国で少子化対策が成功している理由は何か、本文に即して説明しなさい。

問3 下線部(2)の具体例としてあげられているものを、本文に即して説明しなさい。

問4 以下の(a)～(d)のうち、本文の内容から正しいと判断できるものを一つ選び記号で答えなさい。

- (a) 1976年以来、世界的に出生率の向上を望む国は3倍以上に増加している。
- (b) 世界で最も人口の多い国は中国である。
- (c) 税制優遇措置は、日本では人口増加に効果があった。
- (d) 国債の売却は、すでに苦しい状況にある労働者に打撃を与える。

——このページは白紙——

C2346

2 次の英文を読んで、以下の問い合わせに答えなさい。
([1]～[3]はそれぞれ段落番号を表す。)

[1] The traces of genetic material that humans constantly shed wherever they go could soon be used to track individual people, or even whole ethnic groups, scientists said on Monday, warning of a *looming “ethical *quagmire.”

[2] A recently developed technique can glean a huge amount of information from tiny samples of genetic material called (1)environmental DNA, or eDNA, that humans and animals leave behind everywhere — including in the air. The tool could lead to a range of medical and scientific advances, and could even help track down criminals, according to the authors of a new study published in the journal *Nature Ecology & Evolution*. But it also poses a vast range of concerns around consent, privacy and surveillance, they added. Humans spread their DNA — which carries genetic information specific to each person — everywhere, by shedding skin or hair cells, coughing out droplets, or in wastewater flushed down toilets. In recent years, scientists have been increasingly collecting the eDNA of wild animals, in the hopes of helping threatened species. For the new research, scientists at the University of Florida’s Whitney Laboratory for Marine Bioscience had been focused on collecting the eDNA of endangered sea turtles. But the international team of researchers inadvertently collected a massive amount of human eDNA, which they called “human genetic bycatch.” David Duffy, a wildlife disease genomic professor at the Whitney Laboratory who led the project, said they were “consistently surprised” by the amount and quality of the human eDNA they collected. “In most cases the quality is almost equivalent to if you took a sample from a person,” he said. (2)The scientists collected human eDNA from nearby oceans, rivers and towns, as well as from areas far from human settlements. Struggling to find a sample not *tainted by humans, they went to a section of a remote Florida island inaccessible to the public. It was free of human DNA — at least until a member of the team walked barefoot along the beach. They were then able to detect eDNA from a single footprint in the sand. In Duffy’s native Ireland, the team found human DNA all along a river, with the exception of the remote mountain stream at its source. Taking samples from the air of a veterinary hospital, the team captured eDNA that matched the staff, their animal patient and viruses common in animals.

[3] One of the study’s authors, Mark McCauley of the Whitney Laboratory, said that by sequencing the DNA samples, the team was able to identify if a person had a greater risk of diseases such as *autism and *diabetes. “All of this very personal, ancestral and health-related data is freely available in the environment, and it’s simply floating around us in the air right now,” McCauley told an online news conference. “We specifically did not examine our *sequences in a way that we would be able to pick out specific individuals

because of the ethical issues,” he said. But that would ⁽³⁾ “definitely” be possible in the future, he added. “The question is how long it takes until we’re at that stage.” The researchers emphasized the potential benefits of collecting human eDNA, such as tracking cancer *mutations in wastewater, discovering long-hidden archaeological sites or revealing the true *culprit of a crime using only the DNA they left in a room. Natalie Ram, a law professor at the University of Maryland not involved in the research, said the findings “should raise serious concern about genetic privacy and the appropriate limits of policing.” “Exploiting involuntarily shed genetic information for investigative aims risks putting all of us under *perpetual genetic surveillance,” she wrote in a commentary on the study. The authors of the study shared her concerns. McCauley warned harvesting human eDNA without consent could be used to track individual people or even target “vulnerable populations or ethnic minorities.” ⁽⁴⁾It is why the team decided to sound the alarm, they said in a statement, calling for policymakers and scientists to start working on regulation that could address such issues.

(Juliette Collen, “New threat to privacy? Scientists sound alarm about DNA tool”, The Japan Times, 2023/5/16, AFP-JIJI.一部改編)

*loom：迫る

*quagmire：泥沼

*taint：汚染する

*autism：自閉症

*diabetes：糖尿病

*sequence：配列

*mutation：突然変異

*culprit：犯罪者

*perpetual：永続的

問1 下線部 (1) の environmental DNA, or eDNA について, ① eDNA とは何か, また
② eDNA は何に役立つ可能性があるか, 段落[2]で述べられている内容に即して, それ
ぞれ30字程度で説明しなさい。

問2 下線部 (2) を日本語に訳しなさい。

問3 下線部 (3) について, 何が “definitely” be possible in the futureなのか, 本文に
即して説明しなさい。

問4 下線部 (4) の It が何を示しているか, 本文に即して説明しなさい。

——このページは白紙——

C2346

11

519

3 次の英文[I]と[II]を読んで、以下の問い合わせに答えなさい。

[I] The 19th century landscape paintings hanging in London's Tate Britain Museum looked awfully familiar to climate physicist Anna Lea Albright. Artist Joseph Mallord William Turner's signature way of *shrouding his *vistas in fog and smoke reminded Albright of her own research tracking air pollution.

"I started wondering if there was (1) a connection," says Albright, who had been visiting the museum on a day off from the Laboratory for Dynamical Meteorology in Paris. After all, Turner — a forerunner of the impressionist movement — was painting as Britain's industrial revolution gathered steam, and a growing number of *belching manufacturing plants earned London the nickname "The Big Smoke."

Turner's early works, such as his 1814 painting "Apulia in Search of Appullus," were rendered in sharp details. Later works, like his celebrated 1844 painting "Rain, Steam and Speed - the Great Western Railway," embraced a dreamier, *fuzzier aesthetic. Perhaps, Albright thought, this *burgeoning painting style wasn't a purely artistic phenomenon. Perhaps Turner and his successors painted exactly what they saw: their *environs becoming more and more obscured by *smokestack haze.

To find out how much realism there is in impressionism, Albright teamed up with Harvard University climatologist Peter Huybers, who's an expert in reconstructing pollution before instruments existed to closely track air quality. Their analysis of nearly 130 paintings by Turner, Paris-based impressionist Claude Monet and several others tells a tale of two modernizing cities.

Low contrast and whiter *hues are *hallmarks of the impressionist style. They are also hallmarks of air pollution, which can affect how a distant scene looks to the naked eye. (2) Tiny *airborne particles, or *aerosols, can absorb or scatter light. That makes the bright parts of objects appear dimmer while also shifting the entire scene's color toward neutral white.

The artworks that Albright and Huybers investigated, which span from the late 1700s to the early 1900s, decrease in contrast as the 19th century progresses. That trend tracks with an increase in air pollution, estimated from historical records of coal sales, Albright and Huybers report in (3) the Feb. 7 Proceedings of the National Academy of Sciences.

[II] Albright and Huybers distinguished art from aerosol by first using a mathematical model to analyze the contrast and color of 60 paintings that Turner made between 1796 and 1850 as well as 38 Monet works from 1864 to 1901. They then compared the findings to *sulfur dioxide emissions over the century, estimated from the trend in the annual amount of coal sold and burned in London and Paris. When sulfur dioxide reacts with molecules in the atmosphere, aerosols form.

"Our results indicate that [19th century] paintings capture changes in the *optical environment associated with increasingly polluted atmospheres during the industrial revolution," the researchers write. As sulfur dioxide emissions increased over time, the amount of contrast in both Turner's and Monet's paintings decreased. However, paintings of Paris that Monet made from 1864 to 1872 have much higher contrast than Turner's last paintings of London made two decades earlier.

The difference, Albright and Huybers say, can be attributed to the much slower start of the industrial revolution in France. Paris' air pollution level around 1870 was about what London's was when Turner started painting in the early 1800s. It confirms that the similar *progression in their painting styles can't be chalked up to coincidence, but is guided by air pollution, the pair conclude.

The researchers also analyzed the paintings' *visibility, or the distance at which an object can be clearly seen. Before 1830, the visibility in Turner's paintings averaged about 25 kilometers, the team found. Paintings made after 1830 had an average visibility of about 10 kilometers. Paintings made by Monet in London around 1900, such as "Charing Cross Bridge," have a visibility of less than five kilometers. That's similar to estimates for modern-day megacities such as Delhi and Beijing, Albright and Huybers say.

To strengthen their argument, the researchers also analyzed 18 paintings from four other London- and Paris-based impressionists. Again, as outdoor air pollution increased over time, the contrast and visibility in the paintings decreased, the team found. What's more, the decrease seen in French paintings lagged behind the decrease seen in British ones.

Overall, air pollution can explain about 61 percent of contrast differences between the paintings, the researchers calculate. In that respect, "different painters will paint in a similar way when the environment is similar," Albright says. "But I don't want to overstep and say: Oh, we can explain all of impressionism."

(Source: Bas den Hond, Science News, February 26, 2023. Used with permission.)

(注)

*shroud : 覆う	*vista : 風景	*belch : 吹き出す
*fuzzier : fuzzy (ぼやけた) の比較級		*burgeon : 芽生える
*environ : (…を) 取り巻く	*smokestack haze : 煙突の薄煙	
*hue : 色合い	*hallmark : 特徴的なこと	
*airborne : 空中の	*aerosol : エアロゾル	
* sulfur dioxide : 二酸化硫黄	*optical : 視覚の	
*progression : 発展, 進み	*visibility : 視程	

問1. 下線部(1)の a connection は何を指すか, [I] の内容に即して説明しなさい。

問2. 下線部(2)を日本語に訳しなさい。

問3. 下線部(3)の英文雑誌で報告されている研究成果に至る過程で Albright and Huybers はどのようなことを行ったか, [II] の内容に即して, 簡潔に 4 点説明しなさい。

東北大学

令和6年度東北大学農学部 AO入試（総合型選抜）Ⅱ期

小 作 文

試験期日 令和5年11月18日（土）

試験時間 9:00～9:30

注意

- 1 問題冊子及び解答用紙は指示があるまで開かないこと。
- 2 問題冊子は1ページからなっている。試験開始後、直ちに確認すること。
- 3 ページの落丁・乱丁及び印刷不鮮明の箇所等に気づいた場合には、監督者に申し出ること。
- 4 解答用紙には、忘れずに受験記号番号及び氏名を記入すること。
解答用紙の裏面には、何も記入しないこと。
- 5 問題冊子は、試験終了後に持ち帰ること。

令和6年度東北大学農学部 AO入試（総合型選抜）Ⅱ期 小作文問題

我が国では、AI（人工知能）やICT（情報通信技術）などの活用が進められています。今後、農林水産物の生産現場や流通、販売において、AIやICTをどのように活用できるか、あなたの考えを述べてください。

（800字程度）

東北大学

令和6年度東北大学農学部
AO入試（総合型選抜）Ⅲ期

小 作 文（午 前）

試験期日 令和6年2月10日（土）

試験時間 9:30～10:00

注意

- 1 問題冊子及び解答用紙は指示があるまで開かないこと。
- 2 問題冊子は1ページからなっている。試験開始後、直ちに確認すること。
- 3 ページの落丁・乱丁及び印刷不鮮明の箇所等に気づいた場合には、監督者に申し出ること。
- 4 解答用紙には、忘れずに受験記号番号及び氏名を記入すること。
解答用紙の裏面には、何も記入しないこと。
- 5 問題冊子、草案紙は、試験終了後に持ち帰ること。

次の課題について30分以内に800字程度で記述してください。

課題

酵素などの細胞内分子や細胞、臓器、生物個体を活用して物質を生産するバイオエコノミーの世界市場は、2030年～2040年に200兆円から400兆円に達すると予測されています（マッキンゼー2020）。バイオエコノミー市場は医療・ヘルスケアに加えて、素材・エネルギー・農業・食品などの分野でも高い成長が予測されます。将来のバイオエコノミー市場に向けて日本はどのような技術開発を進めるべきか、あなたの考えを述べてください。

東北大学

令和6年度東北大学農学部
AO入試（総合型選抜）Ⅲ期

小 作 文 (午 後)

試験期日 令和6年2月10日（土）

試験時間 13:30～14:00

注意

- 1 問題冊子及び解答用紙は指示があるまで開かないこと。
- 2 問題冊子は1ページからなっている。試験開始後、直ちに確認すること。
- 3 ページの落丁・乱丁及び印刷不鮮明の箇所等に気づいた場合には、監督者に申し出ること。
- 4 解答用紙には、忘れずに受験記号番号及び氏名を記入すること。
解答用紙の裏面には、何も記入しないこと。
- 5 問題冊子、草案紙は、試験終了後に持ち帰ること。

次の課題について30分以内に800字程度で記述してください。

課題

世界の人口が増大するに伴って、将来的な食糧危機が懸念されています。これに対して、食料としての昆虫の利用である「昆虫食」に期待が寄せられています。昆虫食について、あなたの考えを述べてください。